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ABSTRACT  

The paper presents a mathematical model. Interaction of elastic standing wave with Peridynamic nonlocal 

spring material model, the model was uniformly discretization with certain grid spacing.  The waves are 
dispersive which is due to the size of the horizon and the size of the discretization. Special attention is 

given to the evaluation of the dispersion relation and group velocity to the standing waves within the 

system. Analytical estimates are accompanied by numerical simulations and analysis of dispersion 
surfaces. 
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INTRODUCTION 

The theory of non-local model of force interaction suggested in Silling (2000) reformulated the classical 

continuum mechanics equations in Peridynamic equation of motion which is an integro-differential form 
and it is free of any spatial derivative (Emmrich and Weckner, 2006). Integration instead of 

differentiation used to compute the force on a material particle by summing up interactions with other 

near-by particles. The nonlocal interactions between the particles located at x and x
/ 
are called a bond. The 

concept of bond that extends over a finite distance is a fundamental difference between the Peridynamic 

model and classical models for materials which are based on the idea of contact forces. i.e., interactions 

between particles that is in direct contact with each other. In this paper Taylor’s theorem applied to the 
integral part of Peridynamic equation for one dimension infinite bar (Chen and Max, 2011). In this paper 

we will study the standing waves on one dimension Peridynamic particles, which oscillated under 

external force and discontinuous discretization, are conforming for the model. The dispersion relation 

provides a fundamental characterization of the nature of wave propagation in an elastic solid. Its 
derivation for various solid configurations, such as beams, plates, surfaces etc., which has been key to the 

development of the field of elastic wave propagation, The paper will discuss one dimension Peridynamic 

homogenous model for dispersive wave equations are discussed, the homogeneous influence functions 
may also be used for systems where the Peridynamic horizon has fixed value for different points in a 

body. The dispersion analysis of obtained model together with numerical solutions of typical initial and 

boundary value problems have been considered.  

Peridynamic Model 
Peridynamic model (Silling and Lehoucq, 2010) will be introduced the material particles interact with 

each other directly through finite distances, the acceleration of any particle at x in the reference 

configuration at time t is given by: 

)tb(x,vx)d),xtu(x,)t,xf(u()t(x,uρ /x

//

Hx

..

                              (1) 

where Hx denotes a neighborhood of x. u The displacement vector field, b a prescribed body force density 
field, ρ the mass density in the reference configuration, and f a pairwise force function which the value is 

the force vector (per unit volume squared) that the particle located at x′ (in the reference configuration) 

exerts on the particle located at the point x (also in the reference configuration). The relative position ξ of 

these two particles in the reference configuration is given by: 
         ξ=x′−x                                                                                      (2) 

and their relative displacement ς  by  
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   η=u(x
/
,t)−u(x, t)                                                                                           (3) 

Note that ς+ξ is the relative position vector between the two particles in the deformed configuration. 
One dimensional peridynamic model of an infinitely long bar with constant cross-section (A) parallel with 

x1-axis, integrate  Eq.(1) over the cross-section A  located at any x1 which x coincided x1 and divided by 
A to obtain :-  

)t,x(bdv)t,x,x(fu
//  





                                                      (4) 

Where: 

                    
///

dxdAdv                                                                  (5) 

                   dA t),x(u
A

1
t),u(x 11 

Α

                                             (6)    
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A

1
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                                                (7) 

                      
A A /

//
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/

11 t)dAdA,x,x(f
A

1
t),x,f(x                        (8) 

 

When the bond respond independently for each other  
 

x)xt),u(x,t),(u(xf̂t),xf(x,
///                                             (9) 

Where f̂ related to the force between the two particles x′ and x and depend only on the deformation of 

that particular bond, from Newton third  

),(f̂),(f̂                                                                 (10) 

For linear peridynamic material (Etienne and Olaf, 2005): 

  )xC(x,)x(x,f),x(x,f̂
//

0
/

                                         (11)          

Where f0 denoting forces in the reference configuration (Emmrich and Weckner, 2007). Without loss of 

generality, we may assume f0≡0 then: 

 )C(),(f̂                                                                                         (12) 

Where C is the material micromodulus function is time independent and an even function: 

         )C(-)C(  for     -∞< ξ < ∞                                             (13) 

The second order tensor of micromodulus: 

),0(
f

)(C 



                                                                         (14)     

In one dimension: 
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3
c)(C



                                                                                  (15) 

Where c is constant depend on the material properties and the dimension of the model. From Eqs. (1), 

(12), (15) and Hx denote the spherical neighborhood of x in the body R with radius δ: 

)t,x(bdv))t,x(u)t,x(u(
xx

)xx()x-x(
c)t,x(u x

/

H

3
/

//

x





                   (16) 

In one dimension (Emmrich and Weckner, 2006), c=18k/5δ
2
, k is the bulk modulus with Poisson ratio 

ν=1/4, for convenience, we set ρ=1 and k=5/18 then Eq. (16) will be: 
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xx
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Applying Taylor’s theorem to: 
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                                                                                                                         (18) 

Then Eq. (17) with the first two terms of Taylor series: 

)t,x(b)t,x(u
48

1
)t,x(u

2

1
)t,x(u

2

xxxxxx                                                     (19) 

The manufactured solution is a technique used for the verification of computational models in this paper 

the method of manufactured solutions will be used to define the problem of one dimension spring model, 
of which the exact solutions are known (Chen and Max, 2011), if each particle vibrate as standing wave:  

tj
x)ecos(k2ut)u(x, 0


  

 Where k is the wave number, substitute in Eq. (17) and using Eq. (18) then to compute the body force 

density: 
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                                                                                                                                         (20)    

                                                                                                                                                

   
tj
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48
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2

k
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22
22
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


                                             (21) 

Computational Results 
The purpose of numerical computation is to analyze the propagation characteristics of the particles 

vibrated as standing wave in one dimension spring model. Let consider a set of discretization nodes 

equally spaced (∆x) as in Figure 1, 
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Figure 1: Computational spacing 

 
Equation (21) for body force density will be: 

tj
e)xrkcos()]

48

k

2

k
(u2)t,x(b

22
22

0


 


, r=1, 2, 3, 4,………              22 

The solution for body force , the horizons δ of  ∆x,2∆x,3∆x, 4∆x are selected when is the horizon smaller 

than 1Δx , in this case would have to no Peridynamic bonds within the horizon. Let the time (0..5 , step 

time 0.1), ρ=1, k = 3π metres
-1

, 0u  =0.5  ,= 3 radians/second and ∆x =0.5,  for homogenous 

Peridynamic model the horizon with fixed value. Equation (22) examined graphically using Maple 

software package in Figure 2 the solutions for different nodes of  length (∆x,2∆x,3∆x, 4∆x)  will 

represent a standing wave in which the amplitude depend on the wave number, horizon, angular 
frequency and the density.                           .                                                                                                                                                                                                    

  The dispersion relation for standing wave model will be derived, assuming b(x, t)=0 , for two terms of 

Taylor’s expand in Eq. (21) we obtain:-   

)
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(
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In Figure 3, the angular frequency will depend not only on the wave number and density but also on the 

horizon (δ), in dispersion relation Eq. (24) have real part and imagery part depend on the values of (
48

2
), 

the dispersion curve provide an exact fundamental description of  how an elastic harmonic standing wave 

locally, and instantaneously, disperses in a Peridynamic model  under certain conditions, when the wave 
number is taken to be zero, the frequency equal to zero that all points in Peridynamic model have same 

amplitude and move in phase. In imaginary part as the wave number increase the frequency will be 

increase too .this means all points will vibrate in same amplitude but out of phase until the peak then the 
frequency deceases to cutoff frequency then the real part of  dispersion relation begin and as the wave 

number increase the frequency also increases.  
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(a) δ = ∆x 

 

(b)  δ =2∆x 

 

 

 

(c)  δ =3∆x 

 

(d) δ =4∆x 
        

 
Figure 2: The solution of equation (2-12) for standing wave. 
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Figure 3: Dispersion relation for standing wave model, dash line for imaginary part, solid line for 

real part 

                      
                                               a                                                                                        b  

Figure 4: Group velocity for standing wave model (a) δ=0.5, (b) δ= 0.1 

 

The group velocity is defined as
k

vg



 , from Eq. 24: 
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The group velocity, the velocity at which the energy of a wave packet travels considered in Figure 4. 
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