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ABSTRACT 

The present paper deals with the determination of displacement and thermal stresses in a thick circular 

plate with internal heat generation. Arbitrary heat flux is applied at the upper surface of a thick circular 
plate, whereas lower surface at zero temperature and the fixed circular edge is thermally insulated. Here 

we compute the effects of internal heat generation of a thick circular plate in terms of stresses along radial 

direction. The governing heat conduction equation has been solved by the method of integral transform 
technique. The results are obtained in a series form in terms of Bessel’s functions. The results for 

temperature change and stresses have been computed numerically and illustrated graphically.   

                      
Key Words: Thermal Stresses, Internal Heat Generation, Steady State 

 

INTRODUCTION  
During the second half of the twentieth century, nonisothermal problems of the theory of elasticity 
became increasingly important. This is due to their wide application in diverse fields. The high velocities 

of modern aircraft give rise to aerodynamic heating, which produces intense thermal stresses that reduce 

the strength of the aircraft structure.                

The steady state thermal stresses in circular disk subjected to an axisymmetric temperature distribution on 

the upper face with zero temperature on the lower face and the circular edge has been considered by 

Nowacki (1957). Sharma et al., (2004) studied the behavior of thermoelastic thick plate under lateral 

loads. Kulkarni and Deshmukh (2008) determined quasi-static thermal stresses in steady state thick 
circular plate. Deshmukh et al., (2009) studied non homogeneous steady state heat conduction problem in 

a thin circular plate and discussed its thermal stresses due to its internal heat generation at a constant rate. 

Most recently Bhongade and Durge (2013) considered thick circular plate and discuss, effect of Michell 
function on steady state behavior of thick circular plate. In this paper thick circular plate is considered and 

discussed its thermoelasticity with the help of the Goodier’s thermoelastic displacement potential function 

and the Michell’s function. To obtain the temperature distribution integral transform method is applied. 
The results are obtained in series form in terms of Bessel’s functions and the temperature change and 

stresses have been computed numerically and illustrated graphically. Here we compute the effects of 

internal heat generation in terms of stresses along radial direction. A mathematical model has been 

constructed of a thick circular plate with the help of numerical illustration by considering aluminum 
(pure) circular plate. No one previously studied such type of problem. This is new contribution to the 

field.                                                  

The direct problem is very important in view of its relevance to various industrial mechanics subjected to 
heating such as the main shaft of lathe, turbines and the role of rolling mill, base of furnace of boiler of a 

thermal power plant, gas power plant.     

Formulation of the Problem 

Consider a thick circular plate of thickness h defined by 0≤ 𝑟 ≤ 𝑎,
−ℎ

2
≤ 𝑧 ≤

ℎ

2
. The initial temperature in 

a thick circular plate is zero. The arbitrary heat flux – 
𝑄

𝜆
𝑓(𝑟)  is applied over the upper surface (z= 

ℎ

 2
) and 

the lower surface ( z = - 
ℎ

2
 ) is at temperature zero. The fixed circular edge (𝑟 = 𝑎) is thermally insulated. 
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Assume the circular boundary of a thick circular plate is free from traction. Under these prescribed 

conditions, the thermal steady state temperature, displacement and stresses in a thick circular plate with 

internal heat generation are required to be determined. The differential equation governing the 

displacement potential function 𝜙 𝑟, 𝑧  is given in (2003) as 

 
𝜕2𝜙

𝜕𝑟2 +
1

𝑟
 
𝜕𝜙

𝜕𝑟
+

𝜕2𝜙

𝜕𝑧2 =  𝐾𝜏                                        (1) 

 where K is the restraint coefficient and temperature change 𝜏 = 𝑇 − 𝑇𝑖,  𝑇𝑖   is initial(ambient) 

temperature. Displacement function 𝜙 is known as Goodier’s thermoelastic displacement potential. 

The steady state temperature of the plate satisfies the heat conduction equation, 

 
𝜕2𝑇

𝜕𝑟2 +
1

𝑟
 
𝜕𝑇

𝜕𝑟
+

𝜕2𝑇

𝜕𝑧2 + 
𝑞

𝑘
=  0                                    (2) 

with the boundary conditions           

 𝑇 = 0 𝑎𝑡 z = −
ℎ

2
,   0 ≤ 𝑟 ≤ 𝑎                                         (3) 

 
𝜕𝑇

𝜕𝑍
= −

𝑄

𝜆
 𝑓 𝑟   𝑎𝑡 𝑧 =

ℎ

2
, 0 ≤ 𝑟 ≤ 𝑎                                            (4) 

 
𝜕𝑇

𝜕𝑟
= 0 𝑎𝑡 𝑟 = 𝑎,

−ℎ

2
≤ 𝑧 ≤

ℎ

2
                                           (5)             

where k is the thermal conductivity of the material of the plate and q is the internal heat generation.         

The Michell’s function M must satisfy 

 ∇2∇2𝑀 = 0                                 (6) 

 where 

∇2=  
𝜕2

𝜕𝑟2 +
1

𝑟
 
𝜕

𝜕𝑟
+

𝜕2

𝜕𝑧2                                (7) 

The components of the stresses are represented by the thermoelastic displacement potential 𝜙 and 

Michell’s function M as 

𝜎𝑟𝑟 = 2𝐺  
𝜕2𝜙

𝜕𝑟2 −  𝐾𝜏 + 
𝜕

𝜕𝑧
 𝑣∇2𝑀 − 

𝜕2𝑀

𝜕𝑟2
                       (8) 

𝜎𝜃𝜃 = 2𝐺  
1

𝑟
 
𝜕𝜙

𝜕𝑟
−  𝐾𝜏 + 

𝜕

𝜕𝑧
 𝑣∇2𝑀 −

1

𝑟
 
𝜕𝑀

𝜕𝑟
                                             (9) 

𝜎𝑧𝑧 = 2𝐺  
𝜕2𝜙

𝜕𝑧2 −  𝐾𝜏 + 
𝜕

𝜕𝑧
 (2 − 𝑣)∇2𝑀 − 

𝜕2𝑀

𝜕𝑧2
                                                               (10)  

and 

 𝜎𝑟𝑧 = 2𝐺  
𝜕2𝜙

𝜕𝑟𝜕𝑧
+ 

𝜕

𝜕𝑟
 (1 − 𝑣)∇2𝑀 − 

𝜕2𝑀

𝜕𝑧2
                   (11) 

where G and v are the shear modulus and Poisson’s ratio respectively. 

For traction free surface stress functions   

𝜎𝑟𝑟 =   𝜎𝑧𝑧 = 𝜎𝑟𝑧 = 0 𝑎𝑡 𝑧 = − 
ℎ

2
                (12) 

Solution  
To obtain the expression for temperature T ( r, z ), we introduce the finite Hankel transform over the 

variable r and its inverse transform defined by (1968)as 

𝑇  𝛽𝑚 , 𝑧 =   𝑟′ 𝐾0 𝛽𝑚 , 𝑟′ 
𝑎

𝑟′=0
 𝑇(𝑟′, 𝑧) 𝑑𝑟′                                (13) 

𝑇(𝑟, 𝑧)  =   𝐾0 𝛽𝑚 , 𝑟 ∞
𝑚=1  𝑇  𝛽𝑚 , 𝑧                             (14) 

where                         

  𝐾0 𝛽𝑚 , 𝑟 =  
 2

𝑎
  
𝐽0(𝛽𝑚 𝑟)

𝐽0(𝛽𝑚 𝑎)
               (15) 

Eigen value 𝛽𝑚  are the positive root of 𝐽0’ 𝛽𝑚𝑎 =  0           (16) 

 𝑎𝑛𝑑  𝛽1, 𝛽2 … ..   are roots of the transcendental equation 

where  𝐽𝑛 𝑥  is Bessel function of the first kind of order n.  

On applying the finite Hankel transform defined in the Eq. (13) and its inverse transform defined in Eq. 
(14)  to the Eq. (2), one obtains the expression for temperature as   
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𝑇 𝑟, 𝑧 =    
 2

𝑎
  
𝐽0(𝛽𝑚 𝑟)

𝐽0(𝛽𝑚 𝑎)
∞
𝑚=1    

−𝐴(βm ,−
ℎ

2
) 𝑐𝑜𝑠ℎ  𝛽𝑚  𝑧−

ℎ

2
  

𝑐𝑜𝑠ℎ⁡( ℎ𝛽𝑚 )
  

    +  
−𝑄 𝐹   𝛽𝑚  

  𝛽𝑚 𝜆
−

1

  𝛽𝑚

𝜕𝐴  𝛽𝑚 ,
ℎ

2
 

𝜕𝑍
 

𝑠𝑖𝑛 ℎ 𝛽𝑚  𝑧+
ℎ

2
  

𝑐𝑜𝑠ℎ⁡( ℎ𝛽𝑚 )
 + 𝐴 𝛽𝑚 , 𝑧                                        (17) 

𝐴 𝛽𝑚 , 𝑧  is particular integral of differential Eq. (2). 
Michells function M 

Now suitable form of M which satisfy Eq. (6) is given by  

  𝑀 =   𝐽0 𝛽𝑚𝑟 ∞
𝑚=1  𝐵𝑚  𝑐𝑜𝑠ℎ  𝛽𝑚  𝑧 +

ℎ

2
  +  𝐶𝑚  𝛽𝑚  𝑧 +

ℎ

2
 𝑠𝑖𝑛ℎ  𝛽𝑚  𝑧 +

ℎ

2
                    (18) 

 where  𝐵𝑚  𝑎𝑛𝑑 𝐶𝑚  are arbitrary functions. 

Goodiers thermoelastic displacement potential 𝜙(𝑟, 𝑧) 

Assuming the displacement function 𝜙 𝑟, 𝑧  which satisfies Eq. (1) as 

 𝜙 𝑟, 𝑧 =   
 2

𝑎
  
𝐽0 𝛽𝑚 𝑟 

𝐽0 𝛽𝑚𝑎 
  ∞

𝑚=1   
−𝐴 βm ,−

ℎ

2
 cosh   𝛽𝑚  𝑧−

ℎ

2
  

cosh   ℎ𝛽𝑚  
  

                  +  
−Q F   𝛽𝑚  

  𝛽𝑚 𝜆
−

1

  𝛽𝑚

𝜕A  βm ,
ℎ

2
 

𝜕𝑍
 

sinh  𝛽𝑚  𝑧+
ℎ

2
  

cosh   ℎ𝛽𝑚  
+ 𝐴 β

m
, −

ℎ

2
  𝑒𝛽𝑚  𝑧+

ℎ

2
                            (19)                       

Now using Eqs. (17), (18) and (19) in Eqs. (8), (9), (10) and (11), one obtains the expressions for stresses 

respectively as  
𝜎𝑟𝑟

𝐾
 = 2𝐺     

 − 2𝛽𝑚
2𝐽1 ′ 𝛽𝑚 𝑟 

𝑎  𝐽0 𝛽𝑚 𝑎 
∞
𝑚=1   

             ×

 
 
 
 
 
−𝐴 𝛽𝑚 ,−

ℎ

2
 𝑐𝑜𝑠ℎ  𝛽𝑚  𝑧−

ℎ

2
  

𝑐𝑜𝑠ℎ  ℎ𝛽𝑚  
+   

−𝑄 𝐹   𝛽𝑚  

  𝛽𝑚 𝜆
−

1

  𝛽𝑚

𝜕𝐴  𝛽𝑚 ,
ℎ

2
 

𝜕𝑍
 

×
𝑠𝑖𝑛 ℎ 𝛽𝑚  𝑧+

ℎ

2
  

𝑐𝑜𝑠ℎ  𝛽𝑚 ℎ 
+  𝐴  𝛽𝑚 , −

ℎ

2
 𝑒𝛽𝑚  𝑧+

ℎ

2
 

 
 
 
 
 

 

             − 
 2 𝐽0 𝛽𝑚 𝑟 

𝑎  𝐽0 𝛽𝑚 𝑎 
×

 
 
 
 
 
−𝐴 𝛽𝑚 ,−

ℎ

2
 𝑐𝑜𝑠ℎ  𝛽𝑚  𝑧−

ℎ

2
  

𝑐𝑜𝑠ℎ   ℎ𝛽𝑚  
+   

−𝑄 𝐹   𝛽𝑚  

  𝛽𝑚 𝜆
−

1

  𝛽𝑚

𝜕𝐴  𝛽𝑚 ,
ℎ

2
 

𝜕𝑍
 

×
𝑠𝑖𝑛 ℎ 𝛽𝑚  𝑧+

ℎ

2
  

𝑐𝑜𝑠ℎ  𝛽𝑚 ℎ 
+ 𝐴( 𝛽𝑚 , 𝑧)  

 
 
 
 

    

            + 𝛽𝑚
2   

 2𝑣 𝐽0 𝛽𝑚𝑟  𝐶𝑚 +  𝐶𝑚 +  𝐵𝑚    𝐽1
′  𝛽𝑚𝑟  𝑠𝑖𝑛ℎ  𝛽𝑚  𝑧 +

ℎ

2
  𝛽𝑚

+ 𝐶𝑚    𝐽1′ 𝛽𝑚𝑟   𝑧 +
ℎ

2
 𝑐𝑜𝑠ℎ   𝛽𝑚  𝑧 +

ℎ

2
   

                                 (20)        

    
𝜎𝜃𝜃

𝐾
 = 2𝐺     

− 2𝛽𝑚  𝐽1 𝛽𝑚 𝑟 

𝑎  𝑟𝐽0 𝛽𝑚𝑎 
∞
𝑚=1  

                      ×

 
 
 
 
 
−𝐴 𝛽𝑚 ,−

ℎ

2
 𝑐𝑜𝑠ℎ  𝛽𝑚  𝑧−

ℎ

2
  

𝑐𝑜𝑠ℎ  ℎ𝛽𝑚  
+  

−𝑄 𝐹   𝛽𝑚  

  𝛽𝑚 𝜆
−

1

  𝛽𝑚

𝜕𝐴  𝛽𝑚 ,
ℎ

2
 

𝜕𝑍
 

×
𝑠𝑖𝑛 ℎ 𝛽𝑚  𝑧+

ℎ

2
  

𝑐𝑜𝑠ℎ  𝛽𝑚 ℎ 
+  𝐴  𝛽𝑚 , −

ℎ

2
 𝑒𝛽𝑚  𝑧+

ℎ

2
 

 
 
 
 
 

  

                       − 
 2 𝐽0 𝛽𝑚 𝑟 

𝑎 𝐽0 𝛽𝑚𝑎 
×

 
 
 
 
 
−𝐴 𝛽𝑚 ,−

ℎ

2
 𝑐𝑜𝑠ℎ   𝛽𝑚  𝑧−

ℎ

2
  

𝑐𝑜𝑠ℎ  ℎ𝛽𝑚  
+  

−𝑄 𝐹   𝛽𝑚  

  𝛽𝑚 𝜆
−

1

  𝛽𝑚

𝜕𝐴  𝛽𝑚 ,
ℎ

2
 

𝜕𝑍
 

×
𝑠𝑖𝑛 ℎ 𝛽𝑚  𝑧+

ℎ

2
  

𝑐𝑜𝑠ℎ  𝛽𝑚 ℎ 
+ 𝐴( 𝛽𝑚 , 𝑧)  

 
 
 
 

              

          + 𝛽𝑚
2  𝑠𝑖𝑛ℎ  𝛽𝑚  𝑧 +

ℎ

2
     2𝑣 𝛽𝑚  𝐽0 𝛽𝑚𝑟  𝐶𝑚 + 

𝐽1 𝛽𝑚 𝑟 

𝑟
  𝐵𝑚                    

                        + 𝐶𝑚  𝛽𝑚
2  

𝐽1 𝛽𝑚 𝑟 

𝑟
   𝑠𝑖𝑛ℎ  𝛽𝑚  𝑧 +

ℎ

2
  + 𝛽𝑚   𝑧 +

ℎ

2
 𝑐𝑜𝑠ℎ  𝛽𝑚  𝑧 +

ℎ

2
                  (21)  

    
𝜎𝑧𝑧

𝐾
 = 2𝐺     

 2 𝛽𝑚
2  𝐽0 𝛽𝑚 𝑟 

𝑎 𝐽0 𝛽𝑚 𝑎 
    ∞

𝑚=1  
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                       ×

 
 
 
 
 
−𝐴 𝛽𝑚 ,−

ℎ

2
 𝑐𝑜𝑠ℎ  𝛽𝑚  𝑧−

ℎ

2
  

𝑐𝑜𝑠ℎ  ℎ𝛽𝑚  
+  

−𝑄 𝐹   𝛽𝑚  

  𝛽𝑚 𝜆
−

1

  𝛽𝑚

𝜕𝐴  𝛽𝑚 ,
ℎ

2
 

𝜕𝑍
 

×
𝑠𝑖𝑛 ℎ 𝛽𝑚  𝑧+

ℎ

2
  

𝑐𝑜𝑠ℎ  𝛽𝑚 ℎ 
+  𝐴  𝛽𝑚 , −

ℎ

2
 𝑒

𝛽𝑚  𝑧+
ℎ

2
 

 
 
 
 
 

 

                    − 
 2 𝐽0 𝛽𝑚 𝑟 

𝑎  𝐽0 𝛽𝑚 𝑎 
×

 
 
 
 
 
−𝐴 𝛽𝑚 ,−

ℎ

2
 𝑐𝑜𝑠ℎ  𝛽𝑚  𝑧−

ℎ

2
  

𝑐𝑜𝑠ℎ  ℎ𝛽𝑚  
+   

−𝑄 𝐹   𝛽𝑚  

  𝛽𝑚 𝜆
−

1

  𝛽𝑚

𝜕𝐴  𝛽𝑚 ,
ℎ

2
 

𝜕𝑍
 

×
𝑠𝑖𝑛 ℎ 𝛽𝑚  𝑧+

ℎ

2
  

𝑐𝑜𝑠ℎ   𝛽𝑚 ℎ 
+ 𝐴( 𝛽𝑚 , 𝑧)  

 
 
 
 

 

                     − 𝛽𝑚
3  𝑠𝑖𝑛ℎ  𝛽𝑚  𝑧 +

ℎ

2
       1 + 2𝑣 𝐶𝑚 + 𝐵𝑚   

                   −  𝐶𝑚   𝛽𝑚
4  𝑧 +

ℎ

2
  𝑐𝑜𝑠ℎ  𝛽𝑚  𝑧 +

ℎ

2
                       (22) 

   
𝜎𝑟𝑧

𝐾
 = 2𝐺   𝛽𝑚

2 𝐽1 𝛽𝑚𝑟     ∞
𝑚=1 

− 2

𝑎 𝐽0 𝛽𝑚𝑎 
 

            ×

 
 
 
 
 
−𝐴 𝛽𝑚 ,−

ℎ

2
 𝑠𝑖𝑛 ℎ  𝛽𝑚  𝑧−

ℎ

2
  

𝑐𝑜𝑠ℎ  ℎ𝛽𝑚  
+  

−𝑄 𝐹   𝛽𝑚  

  𝛽𝑚 𝜆
−

1

  𝛽𝑚

𝜕𝐴  𝛽𝑚 ,
ℎ

2
 

𝜕𝑍
 

×
𝑐𝑜𝑠ℎ 𝛽𝑚  𝑧+

ℎ

2
  

𝑐𝑜𝑠ℎ  𝛽𝑚 ℎ 
+  𝐴  𝛽𝑚 , −

ℎ

2
 𝑒

𝛽𝑚  𝑧+
ℎ

2
 

 
 
 
 
 

 

          +  (2𝑣 𝐶𝑚 + 𝐵𝑚 )  𝛽𝑚   𝑐𝑜𝑠ℎ  𝛽𝑚  𝑧 +
ℎ

2
  −  𝐶𝑚  𝛽𝑚

2   𝑧 +
ℎ

2
   𝑠𝑖𝑛ℎ  𝛽𝑚  𝑧 +

ℎ

2
                   (23) 

In order to satisfy condition Eq. (12), solving Eqs. (20), (22) and (23) for 𝐵𝑚  and 𝐶𝑚   one obtains  

Let  𝐶𝑚 = 0                (24) 

 𝐵𝑚  =
 2

𝑎   𝛽𝑚 𝐽0 𝛽𝑚 𝑎 

 
 
 
     

𝐴 𝛽𝑚 ,−
ℎ

2
 𝑠𝑖𝑛 ℎ  𝛽𝑚 ℎ 

𝑐𝑜𝑠ℎ  𝛽𝑚 ℎ 
+  

−𝑄 𝐹   𝛽𝑚  

  𝛽𝑚 𝜆
−

1

  𝛽𝑚

𝜕𝐴  𝛽𝑚 ,
ℎ

2
 

𝜕𝑍
 

×
1

𝑐𝑜𝑠ℎ  𝛽𝑚 ℎ 
+ 𝐴  𝛽𝑚 , −

ℎ

2
  

 
 
 
                     (25)            

     
Special Case and Numerical Calculations 

Setting 

(1) f(r)  =   𝛿 𝑟 − 𝑟0          
𝑎 = 1𝑚, ℎ = 0.25𝑚, 𝑟0 = 1𝑚 

where 𝛿 𝑟  is well known diract delta function of argument r.  

 𝐹  𝛽𝑚  =
 2  

𝑎
 𝑟0 𝐽0( 𝛽𝑚𝑟0) 

(2)  𝑞 = 𝛿 𝑟 − 0.5  𝑧 

  𝑞 =   𝑟’
𝑎

𝑟’=0
 
 2

𝑎
  
𝐽0(𝛽𝑚 𝑟)

𝐽0(𝛽𝑚 𝑎)
 𝛿 𝑟 − 0.5  𝑧 𝑑𝑟’  

     = 
 2

𝑎
 
 𝐽0  𝛽𝑚 0.5  0.5  

 𝐽0  𝛽𝑚 𝑎 
 𝑧 

Material properties 
The numerical calculation has been carried out for aluminum (pure) circular plate with the material 

properties defined as 

Thermal diffusivity α = 84.18× 10−6 m2s−1,  
Specific heat 𝑐𝜌 = 896 J/kg,    

Thermal conductivity k = 204.2 W/m K, 

Shear modulus 𝐺 = 25.5 𝐺 pa, 
Poisson ratio 𝜗 = 0.281.   
Roots of transcendental equation 
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The 𝛽1 = 3.8317,  𝛽2 = 7.0156,  𝛽3 = 10.1735,  𝛽4 = 13.3237,  𝛽5 = 16.4706, 𝛽6 = 19.6159  are the 

roots of transcendental equation 𝐽0’ 𝛽𝑚𝑎 = 0. The numerical calculation and the graph has been carried 

out with the help of mathematical software Mat lab.  
 

DISCUSSION    
In this paper a thick circular plate is considered and determined the expressions for temperature and 

stresses due to internal heat generation within it and we compute the effects of internal heat generation in 

terms of stresses along radial direction by substituting 𝑞 = 0 in Eqs. (17), (19), (20), (21), (22), (23), (24) 

and (25) and we compare the results for  𝑞 = 0 and  𝑞 ≠ 0. As a special case mathematical model is 

constructed for considering aluminum (pure) circular plate with the material properties specified above. 
 

 
 

Figure 1: Radial stress function 
𝛔𝐫𝐫

𝐊
  for (q = 0).    Figure 2: Radial stress function 

𝛔𝐫𝐫

𝐊
  for (q≠0). 

 
 

Figure 3: Angular stress function 
𝛔𝛉𝛉

𝐊
  for (q = 0).  Figure 4: Angular stress function 

𝛔𝛉𝛉

𝐊
  for (q≠0). 
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Figure 5: Axial stress function 
𝛔𝐳𝐳

𝐊
  for (q = 0). Figure 6: Axial stress function 

𝛔𝐳𝐳

𝐊
  for (q ≠0). 

 
 

Figure 7: Stress function 
𝛔𝐫𝐳

𝐊
  for (q=0). Figure 8: Stress function 

𝛔𝐫𝐳

𝐊
  for (q≠ 0). 

 

From figure 1and 2, it is observed that the radial stress function 
σrr

K
 develops compressive stress for (q= 0) 

in the radial direction whereas due to internal heat generation the radial stress function 
σrr

K
 develops tensile 

stress in the radial direction.                          

From figure 3 and 4, it is observed that the angular stress function
σθθ

K
 develops compressive stress for 

(q=0) in the radial direction whereas due to internal heat generation the angular stress function 
σθθ

K
 

develops tensile stress in the radial direction.             

From figure 5 and 6, it is observed that the axial stress function 
σzz

K
  develops tensile stress for (q = 0) and 

(q≠ 0) in the radial direction.               

From figure 7 and 8, it is observed that the stress function 
σrz

K
  develops tensile stress for (q = 0) and 

(q ≠0) in the radial direction. 
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CONCLUSION 

We can conclude that due to internal heat generation in thick circular plate the radial stresses and the 

angular stresses are tensile. Also, it can be observed that there is no effect of internal heat generation on 

axial stress function 
σzz

K
 and stress function 

σrz

K
 in the radial direction.           

The results obtained here are useful in engineering problems particularly in the determination of state of 

stress in a thick circular plate and base of furnace of boiler of a thermal power plant and gas power plant. 
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