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ABSTRACT 

In this paper, entries of sequences and infinite matrices are real or complex numbers. The (M, n) method 
of summability was introduced by Natarajan in 2013(a) and some of its properties were studied in 

Natarajan 2012, 2013(a), 2013(b), No date.  In this paper, we prove Maddox’s theorems for the (M, n) 
method. 
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1. Introduction and Preliminaries 

Throughout the present paper, entries of sequences and infinite matrices are real or complex numbers.  To 

make the paper self-contained, we recall the following.  Given an infinite matrix A = (ank), n, k = 0, 1, 2, 
... and a sequence x = {xk}, k = 0, 1, 2, ..., by the A-transform of x = {xk}, we mean the sequence A(x) = 

{(Ax)n}, 

0,1,2,...,n,xa(Ax)
0k

knkn 




 

where we suppose that the series on the right converge.  If 


n
n

(Ax)lim  ℓ, we say that  

x = {xk} is A-summable or summable A to ℓ.  If ,(Ax)lim n
n




 whenever m,xlim k
k




 we say that A is 

convergence preserving or conservative. If, further, ℓ = m we say that A is regular. The following result 
gives a characterization of a conservative or regular matrix in terms of its entries (see, for instance, 

(Peyerimhoff, 1969)). 

Theorem 1.1. A = (ank) is conservative if and only if 

(i) 


 0k

nk
0n

asup ; 

(ii) 0,1,2,...;k,δalim knk
n




 

and 

(iii) δ.alim
0k

nk
n







 

Further, A is regular if and only if (i), (ii), (iii) hold with k = 0, k = 0, 1, 2, ... and  = 1. 
Definition 1.2. The Nörlund method (N, pn) is defined by the infinite matrix (ank), where 















n,k0,

n;k,
P

p

a
n

kn

nk  

0,pP
n

0k

kn 


 n = 0, 1, 2, ... . 

The following result is known (see (Peyerimhoff, 1969)). 

Theorem 1.3. The (N, pn) method is regular if and only if 
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(i) ),O(Pp n

n

0k

k 


  n  ; 

and  

(ii) pn = o(Pn),   n  . 

The (M, n) method was introduced by Natarajan in 2013(a) and some of its nice properties were studied 
in Natarajan 2012, 2013(a), 2013(b), No date . 

Definition 1.4. Let {n} be a sequence such that .λ
0n

n 




  Then the (M, n) method is defined by the 

infinite matrix (bnk), where 












n.k0,

n;k,λ
b

kn

nk  

Remark 1.5. In this context, we note that the (M, n) method reduces to the well-known Y-method when 

0 = 1 = 
2

1
 and n = 0, n  2. 

Theorem 1.6. ((Natarajan, 2013(a)), Theorem 2.3).  The (M, n) method is regular if and only if 

1.λ
0n

n 




 

2. Main Results 

In this paper, we will prove some theorems of Maddox for the (M, n) method. Maddox (1977, 1979) 
proved the following results for the (N, pn) method. 

Theorem 2.1. ((Maddox, 1977), Theorem 1) (N, p) = c if and only if 

(i) p = {pn}  ℓ1,  i.e., 


0n

np ; 

and 

(ii) p(z)  0  on  |z|  1, 

where ,zpp(z)
0n

n

n




  (N, p) is the convergence field of the (N, pn) method and c is the Banach space of 

all convergent sequences. 

Theorem 2.2. ((Maddox, 1979), Theorem 5) Let p = {pn}  ℓ1 and 0.p
0n

n 




 Then the following three 

statements are equivalent: 

(i) (N, p)  ℓ; 
(ii) (N, p) = c; 

(iii) p(z)  0   on   |z|  1, 

where ℓ is the Banach space of all bounded sequences. 
We need the following result in the sequel. 

Theorem 2.3. Let p0  0, {Pn} be bounded and ),O(Pp n

n

0k

k 


 n . Then  

(M, p) = (N, p), where (M, p) is the convergence field of the (M, pn) method. 

 

Proof. By hypotheses, 
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M,H

0H,PHp n

n

0k

k




  

where |Pn|  M, n = 0, 1, 2, ..., from which it follows that 


0k

kp  and consequently, the (M, pn) 

method is defined.  Also, 

 0,1,2,...,n,PHpp0 n

n

0k

k0  


                     (2.1) 

which implies that Pn  0, n = 0, 1, 2, ... . Thus the (N, pn) method is defined. Let Pp
0k

k 




. Then, using 

(2.1), we have, 

,PHpp0
0k

k0  




 

which, in turn, implies that P  0.  Let us denote the convergence fields of the (N, pn), (M, pn) methods by 

(N, p), (M, p) respectively.  Since 0,PPlim n
n




 it now follows that (M, p) = (N, p), completing the 

proof of the theorem. 

Remark 2.4. Under the conditions of Theorem 2.3, 0,
P

0

P

p
lim

n

n

n



 so that the (N, pn) method is 

regular, using Theorem 1.3.  We also note that the (M, pn) method need not be regular, though it is always 

conservative, in view of Theorem 1.1. 

Remark 2.5. The (M, pn) method is well-defined when 


0k

kp .  So {Pn} is always bounded, for, 

.ppP
0i

i

n

0i

in  




 

 

As a consequence of Theorem 2.1, Theorem 2.2 and Theorem 2.3, we have the following results. 

Theorem 2.6. Let p0  0, {Pn} be bounded and ),O(Pp n

n

0k

k 


 n  .  Then (M, p) = c if and only if 

p(z)  0  on |z|  1, 

where .zpp(z)
0n

n

n




  

Proof. Let (M, p) = c.  Under the conditions of the theorem, (M, p) = (N, p), in view of Theorem 2.3.  

Since (N, p) = c, using Theorem 2.1, we have, p(z)  0 on |z|  1.  Conversely, let p(z)  0 on |z|  1.  

Under the condition of the theorem, 


0n

np  and so the (M, pn) method is defined.  In the course of 

the proof of Theorem 2.3, we noted that Pn  0, n = 0, 1, 2, ... .  Thus the (N, pn) method is also defined.  
Now, using Theorem 2.3, (N, p) = (M, p).  Again, using Theorem 2.1, we have, (N, p) = c.  It now follows 

that (M, p) = c, completing the proof of the theorem. 

The following result can be proved in a similar fashion. 
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Theorem 2.7. Let p0  0, {Pn} be bounded and ),O(Pp n

n

0k

k 


 n  .  Then the following three 

statements are equivalent: 

(i) (M, p)  ℓ; 
(ii) (M, p) = c; 

(iii) p(z)  0  on  |z|  1. 

We recall the following result, which is well-known (see (Wilansky, 1964),  
p. 231). 

Theorem 2.8. (Mazur-Orlicz) If a conservative matrix sums a bounded divergent sequence, then it sums 

an unbounded one. 
In the above context, we recall that the (M, pn) method is always conservative. 

In view of Theorem 2.8, we have, 

Theorem 2.9. There is no p = {pn} such that (M, p) = ℓ. 
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