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ABSTRACT 

A Homogeneous and isotropic Friedmann-Robertson-Walker (FRW) viscous cosmological model with 
varying gravitational and cosmological constants in the context of higher dimensional space times is 

studied. The exact solutions of the Einstein’s field equations are obtained which are singularly free and 

deceleration parameter is in general not a constant, unless we assume perfect fluid with equation of state 
in the standard cosmologies. The introduction of viscosity is not only free from singularity but also give 

deceleration parameter a freedom to vary with scale factor.  
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INTRODUCTION  

Nowadays the researchers are much interested in the theory of higher dimensional space-times due to its 
direct dependence on the strength of gravitational force. The concept of gravitation and electromagnetism 

could be unified by well known five dimensional theories which were given by Kaluza (1921) and Klein 

(1926), in the single geometrical structure. Thiry (1918) and Jordan (1959) further generalized the 
consideration of coefficient of fifth coordinate as constant, which was the idea of Kaluza and Klein. After 

this Marciano’s (1984) theory suggested that strong evidence of higher dimensions may be experimental 

directions of time variation of fundamental constants. The extension of Kaluza and Klein’s formalism to 

extra dimension is given by number of authors (Witten, 1984; Appelquist et al., 1987) for achieving the 
unification of all interactions including strong and weak forces. Bianchi type-I cosmological models with 

viscous fluid in higher dimensional space time is given by Banerjee et al., (1990). Bianchi type-I string 

cosmological model in higher dimensions is considered by Krori et al., (1994). Also Chatterjee and Bhui 
(1990), Singh et al., (2004), Rahaman et al., (2003) have investigated on the theories consistis the concept 

of higher dimensions. 

The idea of variable gravitational constant G  was first introduced by Dirac (1937), Lau (1985) in the 

context of general relativity who proposed modifications for linking the variation of G  and . Various 

works have been carried out for a modified general relativity theory with this variation inG . Several 

cosmological models with Friedmann-Robertson-Walker model (FRW) metric were studied by the 

number of authors such as Beesham (1986a, b), Berman (1983, 1991a, 1991b), Kalligas et al., (1992), 

Abdusattar and Vishwakarma (1997) by linking of variation of G & . Recently, FRW cosmological 

models with variation of G & in the framework of
2R theory was established by Debnath and Paul 

(2006). Singh (2006) has established FRW cosmological models with variable G  and    in general 

Relativity by using the equation of state  )1( p , where   varies continuously as the universe 

expands.  A cosmological constant of the form
R

R
  , where   is the constant has investigated by the 

authors Al-Rawaf & Taha (1996) and Al-Rawaf (1998). 

A large scale distribution of galaxies in our universe shows that the matter distribution is satisfactorily 
described by perfect fluid. However a realistic treatment of the problem requires the consideration of the 

material distribution other than perfect fluid, which is supported by the fact when neutrino decoupling 

occurred, the matter behaved like viscous fluid in early stage of universe. Misner (1967, 1968) has studied 
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the effect of viscosity on evolution of universe. Number of authors Santos et al., (1985), Coley and 

Tupper (1983), Roy and Prakash (1977), Goenner and Kowalewski (1989), Padmanabhan and Chitre 

(1987), Ram and Singh (1998), Bali et al., (1989, 2004, 2005, 2007), have studied the effect of bulk 
viscosity on the evolution of universe at large and demonstrated that bulk viscosity can lead to inflation 

like solution. Gron (1990) have studied viscous inflationary universe models. 

In the present paper, we have considered a higher dimensional homogeneous and isotropic Friedmann-
Robertson-Walker (FRW) viscous cosmological model with varying gravitational and cosmological 

constants. The work of Singh et al., (2011) is extended to five dimensions.  

2. Field Equations  

The higher dimensional Friedmann-Robertson-Walker metric has been considered in the form 

 










 )sinsinsin(

)1(
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32
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where )(tR  is the scale factor and 1,0,1 k  is the curvature parameter for open, flat and closed 

universe respectively. 

The Einstein’s field equations with time varying cosmological and gravitational constants are given by  

ijijijij gtTtGRgR )()(8
2

1
   ,                                       (2) 

where ijR  is a Ricci tensor, G (t) and )(t  being the variable gravitational and cosmological constants. 

The energy momentum tensor due to bulk viscous fluid is written in the form 

 ijjiij gpuupT


 )( 
,
                                           (3) 

together with 

Hp
R

R
pp  33 

 
,                     

where 
iu  is the five velocity vector of the distribution,   is energy density, p  

is effective pressure of 

field and   
is coefficient of bulk viscosity that determines the magnitude of viscous stress relative to the 

expansion,  
R

R
H


   

is the Hubble parameter. 

The Einstein’s field equations (2) with the metric (1) and the energy momentum tensor (3) can be written 
as  
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Eliminating R  from equations (4) and (5) we get 
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The energy momentum conservation 0; 
ij

jT  yields 
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Using (7), equation (6) reduces to 

H
GG

G



 3

8






.                                                                  (8) 

In terms of Hubble parameter
R

R
H


 , equations (4) and (5) can be written as 
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3. Solution of the Field Equations 

To solve the field equations (9) and (10), the energy density  and pressure p  of the perfect fluid are 

related by the equation of the state given by  

 )1( p ,
   21                                           (11) 

where   is adiabatic parameter. 

In most of investigations in cosmology, the viscosity is assumed to be simple power law function of the 

energy density i.e. 

  
n 0 ,                                             (12) 

where 0  and n  are constants )0( 0    and the variable cosmological constant   is  

23 H .                                                     (13) 

Using (11) , equation (9) transforms to    
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Eliminating   from equations (10) and (14) we get 
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In particular, when the universe is flat (i.e. 0k ), put 0k  in equation (15)  

)(
3
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Transforming equation (16) to the form  
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where a prime ( ‘ ) denotes the differentiation w. r. t. scale factor )(tR .  

Using (12) and (13) in equation there in (17) yields  

R

G

R

H
H

n
 0' 8

)2(   .                                                         (18) 

From equations (10) and (13) we get,  
2)2(38 HG   .                                         (19) 

Also, from equations (11)and (7) we get    
 4 AR ,                                         (20) 

where, A is constant.  

Using (19) and (20) in equation (18), it leads to  
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1
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Integrating (21) w. r. t. R , the solution is given by 
1
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where C  is a constant of integration. 

As 00   and 1 , we conclude that 0a   and 0b .  

Using 
R

R
H
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 in equation (22) and integrating w.r.t. R we get,  
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where 0t  is an arbitrary constant of integration. 

Using suitable transformation of coordinates, equation (23) can be written as  
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From equation (24), we conclude that as  t , R . Thus  0c , the model has no singularity in 

the future. However, it is to be noted that such a non-singularity behavior is exhibited in absence of 

viscosity 0b , 0 , the model becomes singular.  

In general the scale factor )(tR  cannot be expressed as a function of time.  However the physical and 

dynamical parameter can possibly expressed as functions of scale factor which are calculated as follows:  

The energy density of the fluid is  
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The coefficient of bulk viscosity  which determines the magnitude of viscous stress relative to 

expansion is  
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The variable cosmological constant  is  
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and the variable gravitational constant G is  
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The deceleration parameter
2
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viscosity 0B  00  , q becomes a constant  1a  corresponding to the perfect fluid model 

discussed Vishwakarma (2000) and 0
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Hence the expansion is accelerated in the early phase and decelerated in the later phase of evolution. The 

constant parameter 
2

3
H
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  has a upper limit


1
2 B . 

It follows that the density parameter 5.0  for radiation dominated universe and for dust universe

33.0 . Here the density parameter is defined as
23H


 . 

Case II: 0C , 1a  

The deceleration parameter q  in this case derived from (28) is given by 
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where  11  aa  

In this case, the expansion of the universe is accelerated throughout the evolution. 

However the acceleration converges to 1a  at the later stage of evolution. 
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The parameter B  is found within the limits  1
1

2  B


. 

It indicates that for radiation universe 35.1   for dense universe 35.1    and for dust universe

35.1   . 

Case III: 0C  

The scale factor )(tR  can be written as  

)1(4

1

)( nttR  

                            (32)
 

and   144   nq  

This shows that deceleration parameter is constant. The constant deceleration parameter models have 
been discussed by Berman (1983, 1991a, 1991b), Berman and Som (1990). 

The model becomes those discussed by Arbab (1997, 2003). 

The physical parameters are  
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CONCLUSION 

In this paper we have obtained a variety of exact solutions to the field equations for higher dimensional 
viscous cosmological models with variable gravitational and cosmological constants. We have derived the 

forms of G ,  , , as function of the scale factor )(tR . The introduction of viscosity not only frees 

from singularity but also give the deceleration parameter a freedom to vary with the scale factor. Thus a 

viscous cosmological fluid gives a more general situation in the early universe. Viscous cosmological 
model with variable gravitational and cosmological constant has been investigated by Singh (2011) whose 

work has extended and studied in five dimensions. An attempt has been made to retain Singh (2011) form 

of the various quantities. 
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