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ABSTRACT 

Stability of rotating anisotropic fluid-saturated porous layer heated from below and cooled from above 
when the fluid and solid phases are not in local thermal equilibrium is examined analytically. The Darcy 

model is used for the momentum equation and a two-field model that represents the fluid and solid phase 

temperature fields separately is used for energy equation. The linear stability analysis is used to obtain the 

condition for both stationary and oscillatory convection. The effect of thermal non-equilibrium and 
anisotropy of the porous medium on the onset of both stationary and oscillatory convection is discussed. 

It is found that inter-phase heat transfer coefficient stabilizes the system. There is a competition between 

the processes of rotation and thermal diffusion that causes the convection to set in through oscillatory 
mode rather than stationary. The rotation inhibits the onset of convection in both stationary and 

oscillatory mode.  Besides, the effect of porosity modified conductivity ratio, Darcy-Prandtl number and 

the ratio of diffusivities on the stability of the system is reported.  
 

Key Words: Anisotropy, Local Thermal Non-Equilibrium, Convection, Rotation, Taylor Number, 

Rayleigh Number 

Nomenclature  

  a horizontal wavenumber 

 c   Specific heat 

d   Height of the porous layer 

Da       Darcy number, 
2d

K

f

e




 

g   Gravitational acceleration 

h inter phase heat transfer coefficient 

H  non-dimensional inter phase heat transfer coefficient, 
fk

hd



2

 

k horizontal wave number 

sf kk ,   Thermal conductivity tensor of fluid phase and solid phase respectively       

            (ii + jj) kk, (ii + jj) kk.fh fz sh szk k k k   

K   Permeability tensor, (ii + jj) kk.h zK K  

xK  Permeability parameter along x direction 

yK        Permeability parameter along y direction 

k unit vector in the vertical direction,  

Pr  Prandtl number, 
f

fe

k

c

0

)(


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p   Pressure 

q


  Velocity vector, ),( vu  
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Ra   Rayleigh number, 

ff

ul KdTTg



 )(0 
 

T   Temperature  

t   Time 

 yx,   Space co-ordinates 

Greek Symbols 

   Diffusivity ratio 

   Co-efficient of thermal expansion 

   Porosity-modified conductivity ratio, 

s

f

k

k

)1( 




  

  Porosity 

  Thermal diffusivity  

e  Effective viscosity 

f  Fluid viscosity 

f  Fluid density 

  Non-dimensional temperature of the fluid phase 

  Non-dimensional temperature of the solid phase 

2   
2

2

2

2

yx 







 

  Dynamic viscosity 

  Kinematic viscosity, 0  

  Thermal diffusivity,  
ff ck 0  

  Frequency 

1 
 Anisotropic permeability parameter,  

h

z

K

K
 

Subscripts 

b         basic state 

f  Fluid 

l  Lower 

Osc oscillatory 

s solid 

St stationary 

u  Upper 

* Non-dimensional 
0 references 
/ 

perturbed quantity 

 
INTRODUCTION 

Thermal convection in fluid saturated porous media is of considerable interest in many of the geophysical 

and technological problems. There are important applications in geothermal energy utilization, oil 
reservoir modeling, building thermal insulation, nuclear waste disposals. The problem of convective 
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instability of a horizontal fluid saturated porous layer subject to an adverse temperature gradient has been 

investigated extensively by several authors in the past. The growing volume of work devoted to this area 

is well documented by the most recent reviews of Ingham and Pop (1998), Nield and Bejan (2006) and 
Vafai (2000). 

In many engineering applications the porous materials are anisotropic in their mechanical and thermal 

properties. Anisotropy is generally a consequence of preferential orientation or asymmetric geometry of 
porous matrix or fibres.  An excellent review of research on convective flow through anisotropic porous 

media has recently been well documented by Mckibbin (1986) and Storesletten (1998). 

Castinel and Combarnous (1974) were the first to study the onset the thermal convection in a horizontal 

porous layer with anisotropic permeability. Epherre (1975) extended the stability analysis to media with 
anisotropic thermal diffusivity.  

In many practical applications, involving hyper-porous materials and also media in which the solid and 

fluid phases are not in local thermal equilibrium it has been realized that the assumption of local thermal 
equilibrium (LTE) is inadequate for proper understanding of the heat transfer problems. In such 

circumstances, the local thermal non-equilibrium (LTNE) effects are taken into consideration.  Nield and 

Bejan (2006) have discussed a two field model for energy equation. Instead of having a single energy 
equation, which describes the common temperature of the saturated porous media, two equations are used 

for fluid and solid phase separately. In two-field model, the energy equations are coupled by the terms, 

which account for the heat lost or gained from the other phase. The review of Kuznetsov (1996) gives 

detailed information about the works on thermal non-equilibrium effects. Research on thermal non-
equilibrium in porous media is provided by Banu and Rees (2002). 

The effect of LTNE on the onset of convection in a porous layer has been studied using non-Darcian 

model for stress free boundaries by Malashetty et al., (2005a) and with an additional effect of anisotropy 
in permeability as well as thermal diffusivity by Malashetty et al., (2005b). Malashetty et al., (2006) and 

Shivakumar et al., (2006) have analyzed the LTNE effects on the onset of convection in a porous layer 

saturated with Oldroyd B fluid. Malashetty et al., (2008, 2009) have studied the onset of double-diffusive 

convection for the case of both densely packed and sparsely packed porous layer using thermal non-
equilibrium model. Malashetty et al., (2009) have studied convective instability by considering Maxwell 

fluid and couple stress fluid saturated porous layer using thermal non-equilibrium model. Recently, 

Malashetty et al., (2012) have investigated double-diffusive convection in a viscoelastic fluid-saturated 
porous layer using thermal non-equilibrium model. Boundary and thermal non-equilibrium effects on the 

onset of Darcy-Brinkman convection in a porous layer is studied by Shivakumara et al., (2012).  

The study of effect of external rotation on thermal convection has attracted significant experimental and 
theoretical interest. Because of its general occurrence in geophysical and oceanic flows, it is important to 

understand how the Coriolis force influences the structure and transport properties of thermal convection. 

Some of the important areas of applications in engineering include the food processing, chemical process, 

solidification and centrifugal casting of metals and rotating machinery. Straughan (2006) has considered a 
problem of thermal convection in a fluid-saturated porous layer using a global nonlinear stability analysis 

with a thermal non-equilibrium model. Vadasz (1998) has investigated the Coriolis Effect on gravity 

driven convection in a rotating porous layer heated from below.  
The effect of thermal and mechanical anisotropy on the stability of gravity driven convection in rotating 

porous media in the presence of thermal non-equilibrium is studied by Govender and Vadász (2006). 

Malashetty et al., (2007, 2010) have studied the effect of rotation on the onset of convection for the case 
of both densely and sparsely packed porous medium using thermal non-equilibrium model. Linear and 

non-linear double-diffusive convection for the case of both densely and sparsely packed rotating porous 

layer using thermal non-equilibrium model is studied by Malashetty et al., (2008, 2009).  

The effect of rotation on the onset of thermal convection for the case of both densely and sparsely packed 
porous layer using thermal non-equilibrium model is studied by Malashetty et al., (2007, 2010). Natural 

convection in a Nano fluid saturated rotating porous layer using thermal non-equilibrium model is studied 
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by Bhadauria et al., (2011). Bifurcation analysis for thermal convection in a rotating porous layer has 

been investigated by Shivakumara et al., (2012). The analysis of present paper is carried out with a view 

to possible application to binary alloy solidification. A possible engineering application of the current 
study could include the cooling of electronic circuits found in rotating radars. In this paper we extended 

the work of Govender and Vadasz (2006) for the case of unsteady convection in order to know how the 

condition for the onset of convection is modified by LTNE, rotation, mechanical and thermal anisotropy 
in both steady and oscillatory state of convection. Effect of anisotropy parameter, Taylor number and 

Prandtl numbers on critical Rayleigh number is discussed. 

1. Mathematical Formulation 

We consider a Boussinesq fluid saturated anisotropic porous layer of depth d, which is heated from below 

and cooled from above. The lower surface is held at a temperature 1T , while the upper surface is at uT . 

We assume that the solid and fluid phases of the medium are not in local thermal equilibrium and use a 

two-field model for temperatures. It is assumed that at the bounding surfaces the solid and fluid phases 

have identical temperatures. The Darcy model is employed for the momentum equation. The basic 
governing equations are  

. 0 q ,                                                                                                                       (1) 
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p

t K

 
   

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                 [1 ( )]f o f uT T     .                                                                 (5)            

We eliminate the pressure from the momentum equation and render the resulting equation and the energy 

equations for fluid phase and solid phase dimensionless by using the following transformations. 
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where,  
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(The asterisks have been dropped for simplicity) 

1.1 Basic State 
The basic state is assumed to be quiescent and is given by 

  0, ( ), ( ).f fb s sbu v w T T z T T z                                                          (11) 

The basic state temperatures of fluid phase and solid phase satisfy the equations 

                         

2
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( ) 0
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2

2
( ) 0sb
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with boundary conditions 

          1 0fb sbT T at z   ,               

  0 1fb sbT T at z   ,                                                                                     (14) 

so that the conduction state solutions are given by 

                        (1 )fb sbT T z   .                          (15) 

 

1.2   The perturbed state 
The basic state is perturbed and the quantities in the perturbed state are given by 

                       
' ' '( , , ) ( , , ), , .f fb s sbu v w u v w T T T T                            (16) 

Substituting the Equations (16) into Equations (7)-(9) and using the basic state solutions, we obtain the 

following equations for the perturbed quantities (after neglecting the primes) 
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 Since the fluid and solid phases are not in local thermal equilibrium, the use of appropriate 

thermal boundary conditions may pose a difficulty. However, the assumption that the solid and fluid 
phases have equal temperatures at the bounding surfaces made at the beginning of this section helps in 
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overcoming this difficulty. Accordingly, Equations (17) to (19) are solved for impermeable isothermal 

boundaries. Hence the boundary conditions are  

  0 at 0, 1w z  ,                      (20) 

  0 at 0, 1z    .                      (21) 

 

2. Linear Stability Theory 
To study the linear stability theory, we use the linearized version of equations (17)-(19). The principle of 

exchange of stabilities holds in the presence of anisotropy and non-LTE effects (there is only one 

destabilizing agency) so that the onset of convection is stationary. We seek the solutions to the linearized 
equations in the form      

                                                                     

           , , , , expw W z z z i lx my t             ,                                           (22) 

 
Substituting the equations (22) in equations (17) – (19) we obtain the following matrix equation 

 

                       
2 2 2 2 2 21

1 ( ) 1 0
Pr Pr PrD D D

D a D a TaD W a Ra
  



     
             

     
          (23) 

                       
2 2( ) ( ) 0fD a W H                                                                               (24) 

                       
2 2( ) ( ) 0sD a H                                                                                  (25) 

where 
2 2 2/ andD d dz a l m   . 

 

The boundary conditions now become, 

 

1,0at,0  zW                                                                                                                    (26)  

We assume the solution to  and,W  in the form, 

 

 zzzWW  sin,sin,sin 000  ,                                    (27) 

 

which satisfy the boundary conditions (26). Substituting Eqs.  (27) into Eqs. (23)- (25) we obtain the 

following matrix equation 
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By setting the determinant of the above matrix to zero we get               
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The growth rate   is in general a complex quantity such that ir i  . The system with 0r  is 

always stable, while for 0r  it will become unstable. For neutral stability state 0r , therefore we 

now set ii   in Eq. (29) and clear the complex quantities from the denominator, to obtain 
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i) Stationary Convection 
         

     The direct bifurcation (steady state) corresponds to i =0 and steady convection occurs at 
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Which coincides with result obtained by Govender and Vadasz (2007). 

        

 

ii) Oscillatory Convection 
 

The Hopf bifurcation corresponds to et 02   ( 0i ) and this gives a dispersion relation of the form 

(on dropping the subscript i) 
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The solution of Eq.(34) is given by 
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Now Eq. (30) with 
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RESULTS AND DISCUSSION 
Linear stability analysis of a horizontal fluid-saturated rotating anisotropic porous layer is carried out by 
considering a thermal non-equilibrium model. The onset thresholds of both marginal and oscillatory 

convection are derived analytically. The effect of rotation, anisotropy and thermal non-equilibrium on the 

onset of both oscillatory and steady convection is investigated.  
The neutral stability curves in Ra – a plane for various parameter values is shown through figures 1(a-h). 

From these figures it is clear that the neutral curves are connected in a topological sense. This 

connectedness allows the linear stability criteria to be expressed in terms of the critical Rayleigh number, 

below which the system is stable and unstable above. The points where the overstable solutions branch 
off from the stationary convection can be easily identified from these figures. Also we observe that for 

smaller values of the wavenumber each curve is a margin of the oscillatory instability and at some fixed 

wavenumber depending on the other parameters the overstability disappears and the curve forms the 
margin of stationary convection. 

The effect of Taylor number Ta on the marginal stability curves for the fixed values of anisotropy 

parameter, inter-phase heat transfer coefficient, porosity modified conductivity ratio, Darcy-Prandtl 
number and ratio of diffusivities is depicted in figure 1(a). It is noted that there is only stationary 

convection for Ta =0.  For Ta >2 (i.e for Ta = 2.4899, 4, 10, 20, 50,100) we observe that the instability 

manifests into oscillatory mode. This shows that increase in rotation allows the onset of oscillatory 

convection. It is also observed from this figure that the minimum of Rayleigh number for both stationary 
and oscillatory states increases with the Taylor number, indicating that the effect of rotation is to enhance 

the stability of the system in both stationary and overstable modes. 

The effect of the thermal anisotropy parameters s  and f  for solid and fluid phases are shown in figure 

1(b) and 1(d), respectively for fixed values of other parameters. The effect of increasing these parameters, 

for fixed value of the other, increases the critical Rayleigh number for the case of both steady and 
oscillatory state of convection and thus delays the onset of convection. It is to be noted that in this case 

the onset of convection is through oscillatory state. 

In figure 1(c), we display the effect of ratio of diffusivities   on the marginal stability curves. In this case 

critical Rayleigh number increases with increase in   showing the effect of   is to stabilize the system. 

In figure 1 (e) we show the effect of mechanical anisotropy parameter  (= x zK K ) on Rayleigh number 
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Ra for the values of γ =0.5 and 
f  =0.5, 

s  =1.0,  =0.01, PrD =10 and Ta = 25. From this figure it is 

evident that increase in the value of   decreases critical Rayleigh number 
c

Ra for oscillatory state and 

thus augments the onset of convection. This may be understood as follows: let us keep the vertical 

permeability 
zK  fixed (or the horizontal permeability 

xK  fixed), and vary the horizontal permeability 

xK  (or the vertical permeability
zK ). Then an increased horizontal permeability reduces the Rayleigh 

number, indicating that the system becomes unstable. 

The variation of marginal curves for different values of Darcy-Prandtl number PrD , with all other 

parameters kept fixed is revealed in figure 1 (f), which indicates that the critical value of oscillatory 

Rayleigh number increases with the increase in Darcy-Prandtl number. Therefore, the Darcy-Prandtl 
number makes the system more stable. It is important to note that the points where the overstable 

solutions bifurcate into the stationary motions are shifted towards a smaller value of the wave number 

with the increase in Darcy-Prandtl number. Therefore, Darcy-Prandtl number reduces the region 
oscillatory convection. However, the reverse effect has been observed with Taylor number. 

In figure 1(g) the effect of inter-phase heat transfer coefficient H on the neutral stability curves is shown 

for the values of 25,Ta  1  , 0.5,  Pr 10D  , f  =0.5, s =1.0 and 01.0 . It follows that 

with increase in interphase heat transfer coefficient H the minimum Rayleigh number for oscillatory mode 

increases with H, indicating that the effect of inter-phase heat transfer coefficient is to stabilize the 
system. It is also observed that in this case the onset of convection is through oscillatory state as in the 

case of figure 1(b) and (d). 

Figure 1(h) indicates the effect of porosity modified conductivity ratio   on the marginal stability curves 

when 25,Ta  100,H  1  , f  =0.5, s =1.0, Pr 10D   and 01.0 . We observe that with the 

increase in the value of   the minimum of oscillatory Rayleigh number decreases. Therefore, the effect 

of   is to advance the onset of oscillatory convection. 

Figures 2(a–g) shows the variation of critical Rayleigh number with inter-phase heat transfer coefficient 

H for different values ,Ta ,  f , s , , PrD and  . These figures indicate that the critical Rayleigh 

number increases from the LTE value when H is small to a non-LTE value when H is large. Thus, the 
inter-phase heat transfer coefficient makes the system more stable for its intermediate values. Figure 2(a) 

indicates the effect of Taylor number on the critical Rayleigh number for fixed values of other 

parameters. We observe that the stationary critical Rayleigh number Rac increases with increase in Taylor 
number Ta. It is also important to note that as the Taylor number is increased further beyond a critical 

value the convection is bifurcated into the oscillatory mode. The critical Rayleigh number for both 

stationary and oscillatory mode is found to increase with the Taylor number. Therefore, the rotation 

enhances the stability of the system in both stationary and oscillatory modes. 

Figure 2(b) shows the effect of thermal anisotropy parameter s  of the solid phase on 
c

Ra  for fixed 

values of other parameters. It is found that the critical Rayleigh number for both stationary and oscillatory 

state increases with increase in f . It is also observed that for large H the critical Rayleigh number 

attained common limit depending on the value of s .However, for small values of H, 
c

Ra  is found to be 

independent of s . 

The effect of thermal anisotropy parameter f  of the fluid phase on 
c

Ra  is shown in figure 2(c) for fixed 

values of other parameters. The effect is found similer to that of s .The effect of mechanical anisotropy 

parameter   on the critical Rayleigh number is shown in figure 2 (d) for fixed values of other parameters. 

We observe that the onset of convection is through oscillatory state. The critical Rayleigh number 
c

Ra for 
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both stationary and oscillatory state decreases with an increase in the value of   . Further the value of 

c
Ra for both stationary and oscillatory state increases slowly with H reaches a maximum value and for 

large H, 
c

Ra  ultimately approaches to an asymptotic value depending on the value of ξ. 

The variation of oscillatory critical Rayleigh number with H for different values of porosity modified 

conductivity ratio   is depicted in figure 2(e) for fixed values of other parameters. We observe from this 

figure that for 0H , 
osc

cRa is independent of   and is close to that of the LTE case, since for very 

small values of H, there is no significant transfer of heat between the phases and the onset criterion is not 

affected by the properties of the solid phase. On the other hand, for large values of H, though the stability 

criterion is independent of H, the condition for the onset of convection is based on the mean properties of 

the medium and therefore, the critical Rayleigh number is function of  . This figure also indicates that for 

moderate and large values of H, oscillatory critical Rayleigh number decreases with the increasing values 

of . Therefore, the effect of porosity modified conductivity ratio is to inhibit the stabilizing effect of 

both rotation and inter-phase heat transfer coefficient. It is important to note that for sufficiently large 

values of   ( 10 ), the critical Rayleigh number of oscillatory convection becomes independent of H.  

In figure 2(f) the variation of 
osc

cRa  with H for different values of diffusivities ratio   is indicated for 

fixed values of other parameters. We observe that for small values of H the diffusivity ratio does not 

affect the stability criterion. While for large values of H the effect of   on 
osc

cRa  is significant. This 

figure indicates that for moderate and large values of H the oscillatory critical Rayleigh number increases 

with increasing . As   increases, the contribution of heat conduction from the solid phase becomes 

negligible, and therefore the critical Rayleigh number for oscillatory mode increases towards a constant 
value. Thus, the ratio of diffusivities reinforces the stabilizing effect of rotation and inter-phase heat 

transfer coefficient towards the overstable mode.  

Figure 2(g) displays the variation of oscillatory critical Rayleigh number with H for different values of 

Darcy-Prandtl number PrD  for fixed values of other parameters. This figure reveals that 
osc

cRa  increases 

with the increasing values of PrD , indicating that the Darcy-Prandtl number enhances the stability of 

rotating porous layer towards the overstable mode. 
The variation of critical wave number with inter-phase heat transfer coefficient H is shown in figures 3(a-

g) for different parameter values. We observe from these figures that the oscillatory critical wavenumber 

decreases monotonically from the LTE value when H is small to a non-LTE value when H is large, while 
the stationary critical wave number increases with H to its maximum value and then decreases back with 

further increase in H. The effect of Taylor number on critical wave number is displayed in figure 3(a). 

This figure indicates that the critical wave number increases with the increasing Ta in both stationary and 

overstable modes. We found that the critical wave number for the stationary mode approaches to that of 

LTE case when 0H  and H . This is quite obvious as the corresponding physical problems are 

equivalent. As 0H , the solid phase ceases to affect the thermal field of the fluid, which is free to act 

independently, while as H  the solid phase and fluid phase have identical temperatures and may be 

treated as a single phase. At intermediate values of H we observe that the critical wave number for 
stationary mode attains a maximum value and returns back to the LTE value. This is in agreement with 

the result reported in Rees paper (2002) in the absence of rotation. However, the oscillatory critical 

wavenumber 
Osc

ca  decreases monotonically with H for intermediate values of H.  

The effect of thermal anisotropy parameter s  of the solid phase on 
c

Ra  is shown in figure 3(b) for fixed 

values of other parameters. We found that an increase in the value of s  increases the stationary critical 

Rayleigh number 
c

Ra and decreases oscillatory critical Rayleigh number indicating that the effect of 
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increasing the thermal anisotropy parameter of solid phase is to delay the onset of convection for the 

steady state where as for the oscillatory state the effect is to advance the oscillatory convection. Figure 3 

(c) shows the effect of thermal anisotropy parameter f  of the fluid phase on 
c

Ra  for fixed values of 

other parameters. Its effect is found to be similar to that of
s  . 

Figure 3(d) indicates the effect of mechanical anisotropy parameter   on the critical wave number for 

fixed values of other parameters. We observe that critical wave number for oscillatory state decreases 

with increase in   where as for stationary state the critical wave number increases with increase in   

indicating the effect of  is to stabilize stationary state of convection and destabilize the oscillatory state 

of convection. 
Figure 3(e) indicates the variation of critical wavenumber for both oscillatory and stationary mode with H 

for different values of . For stationary as stated earlier for very small values of H the solid phase does 

not affect the onset criterion, and therefore 
Osc

ca  becomes independent of   for small H. On the other 

hand for large values of H, 
Osc

ca is a function of , since the stability criterion depends on the mean 

properties of the medium.  
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Figure 1: Neutral stability curves for different values of  a) Ta , b) s ,c)  ,d) 

f
 ,e)  , f) Pr

D
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Figure 2: Variation of critical Rayleigh number with interphase heat transfer coefficient H for 
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Figure 3: Variation of critical wave number with interphase heat transfer coefficient H for different 

values of a) Ta, b) s , c)
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We observe from this figure that for intermediate values of H the critical wavenumber for the overstable 

mode decreases with the decreasing values of  . For oscillatory state the critical wave number increases 

with increase in  indicating the effect of   is to delay the oscillatory convection. 

The variation of oscillatory critical wavenumber with H for different values of diffusivity ratio   is 

shown in figure 3(f). The effect similar to that of conductivity ratio   for oscillatory state is observed in 

this case also. In figure 3(g) we display the effect of Darcy-Prandtl number on the oscillatory critical 

wavenumber for fixed values of other parameters. This figure indicates that for small values of PrD , the 

critical wavenumber 
Osc

ca  increases with H, attains a maximum value and then decreases when H is 

increased further. Similer effect is observed for stationary mode.  It is observed that the critical wave 

number for the oscillatory mode increases with increasing Darcy-Prandtl number.  

Conclusion 

The stability of a rotating anisotropic rotating fluid saturated porous layer heated from below and cooled 
from above when the solid and fluid phases are not in local thermal equilibrium is examined analytically. 

We found that there is competition between the processes of rotation and thermal diffusion that causes the 

convective instability to set in as an oscillatory mode rather than stationary. It is reported that the inter-
phase heat transfer coefficient stabilizes the system towards both stationary and oscillatory modes. The 

rotation reinforces the stabilizing effect of inter-phase heat transfer coefficient.  
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