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INTRODUCTION 

Throughout the present paper, entries of infinite matrices and sequences are real or complex numbers.  To 

make the paper self-contained, we recall the following.  Given an infinite matrix A  (ank), n, k = 0, 1, 2... 
and a sequence x = {xk}, k = 0, 1, 2..., by the A-transform of x = {xk}, we mean the sequence A(x) = 

{(Ax)n}, 

0,1,2,...,n,xa(Ax)
0k

knkn 




 

where we suppose that the series on the right converge. If 


n
n

(Ax)lim  ℓ, we say that  

x = {xk} is summable A or A-summable to ℓ.  If 


n
n

(Ax)lim  ℓ, whenever m,xlim k
k




 we say that A is 

conservative. Further, if ℓ = m, A is said to be regular. The following result, which gives a 

characterization of a conservative and a regular matrix in terms of its entries, is well-known (Hardy, 

1949). 

Theorem 1.1: A  (ank) is conservative if and only if 

(i) 


 0k

nk
0n

asup ; 

(ii) 0,1,2,...;k,δalim knk
n




 

and 

(iii) δ.alim
0k

nk
n







 

Further, A is regular if and only if (i), (ii), (iii) hold with k = 0, k = 0, 1, 2... and  = 1. 

The (M, n) method was introduced by Natarajan in 2013(a) and some of its nice properties were studied 

earlier by Natarajan in 2012, 2013(a), 2013(b), No date. 

Definition 1.2: Let {n} be such that .λ
0n

n 




  Then the (M, n) method is defined by the infinite 

matrix A  (ank), where 








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n.k0,

n;k,λ
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Remark 1.3: In this context, it is worthwhile to note that the (M, n) method reduces to the Y-method 

when 0 = 1 = 
2

1
 and n = 0, n  2. 

Remark 1.4: The (M, n) method is always conservative using the fact that 


0n

nλ  and  

Theorem 1.1. 

The following result is known (Natarajan, 2013(a), Theorem 2.3). 

Theorem 1.5: (M, n) is regular if and only if 

1.λ
0n

n 




 

Iteration Product of Natarajan Methods 

The following definition is needed in the sequel. 

Definition 2.1: Given the infinite matrix methods A, B, we say that A is included in B (or B includes A), 

written as A  B, if whenever x = {xk} is A-summable to ℓ, it is also B-summable to ℓ. 
The following result is extremely useful (see Hardy, 1949, p. 234, Theorem 176). 

Theorem 2.2: If 0alim n
n




 and ,b
0n

n 




 then 0,clim n
n




 where ,bac
n

0k

knkn 



  n = 0, 1, 2.... 

For convenience, we denote the methods (M, pn), (M, qn) and (M, tn) by (M, p), (M, q) and (M, t) 

respectively. 
In this section, we prove a few theorems on the iteration product of Natarajan methods. 

Theorem 2.3: Let (M, p), (M, t) be regular methods.  Then (M, t) (M, p) is also regular, where we define, 

for x = {xk}, 

((M, t) (M, p))(x) = (M, t) ((M, p)(x)). 

Proof: Let {n} be the (M, p)-transform of x = {xk} and {n} be the (M, t) (M, p)-transform of x = {xk} 
so that 
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where 
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nt and Theorem 2.2, it follows that 
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Since (M, t), (M, p) are regular, 1,PlimTlim n
n

n
n




 in view of Theorem 1.5.  Using ,0)1T(lim n
n


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

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kp  and Theorem 2.2, we have, 
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Consequently (cnk) is regular in view of Theorem 1.1.  In other words, (M, t) (M, p) is regular.  This 
completes the proof of the theorem. 

Theorem 2.4: Let (M, p), (M, q), (M, t) be regular methods.  Then 

(M, p)  (M, q) 
if and only if 

(M, t) (M, p)  (M, t) (M, q). 
Proof: We write 

0,1,2,...n,tqr,tpr
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Since (M, p), (M, q) and (M, t) are regular, (M, t) (M, p) and (M, t) (M, q) are regular too in view of 

Theorem 2.3.  To prove the present theorem, it suffices to show that 

.
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We first note that 
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We now use Theorem 3.1 of Natarajan (2013(a)) to arrive at the conclusion, thus completing the proof of 

the theorem. 
In view of Theorem 3.1 of Natarajan (2013(a)), we can reformulate Theorem 2.4 as follows: 

Theorem 2.5: For given regular methods (M, p), (M, q) and (M, t), the following statements are 

equivalent: 

(i) (M, p)  (M, q); 

(ii) (M, t) (M, p)  (M, t) (M, q); 
and 
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