# EXPERIMENTAL ANALYSIS TO DEVELOP GENERAL PROPERTY ON AREA OF POLYGON 

*Kalaimaran Ara<br>Construction \& Civil Maintenance Dept., Central Food Technological Research Institute (Council of Scientific \& Industrial Research), Mysore-20, Karnataka, India<br>*Author for Correspondence


#### Abstract

Polygon is one of the two dimensional plane figures enclosed by three or more segments of straight lines, in which two adjacent sides meet at vertices. Triangle, quadrilateral, pentagon, hexagon are the specific name of the polygon with respect to its number of sides. In this article, a new property on area of any polygon has been developed and defined with appropriate examples including necessary drawings. This property may be useful for those works related to polygon and also it will be very useful for Research scholars.


Key Words: Polygon, Vertices of Polygon, Triangle, Quadrilateral, Pentagon and Hexagon

## INTRODUCTION

A Polygon (Eric Weisstein, 2003) is a closed two dimensional figure formed by connecting three or more straight line segments, where each line segment end connects to only one end of two other line segments. Polygon is one of the most all encompassing shapes in two- dimensional geometry. The sum of the interior angles is equal to 180 degree angle multiplied by number of sides minus two. The sum of the exterior angles is equal to 360 degree angle. From the simple triangle up through square, rectangle, tetragon, pentagon, hexagon, heptagon, octagon, nonagon, dodecagon (Eric Weisstein, 2003) and beyond is called $n$-gon. Depend upon its interior vertex (Eric Weisstein, 2003) angle, the polygon is divided into various categories viz.,
(i) A Convex polygon (Eric Weisstein, 2003) - a polygon with all diagonals in the interior of the polygon. All vertices point outward concave, at least one vertex point inward towards the center of the polygon. A convex polygon is defined as a polygon with all its interior angles less than $180^{\circ}$.
(ii) A Concave polygon (Eric Weisstein, 2003) - a non-convex. The concave polygon is a simple polygon having at least one interior angle greater than $180^{\circ}$.
(iii) A Simple polygon (Eric Weisstein, 2003) - it does not cross itself.
(iv) A Complex polygon (Eric Weisstein, 2003) - its path may self-intersect. It looks as combined polygons.
(v) A Regular Polygon (Eric Weisstein, 2003) - is a polygon in which all sides are the same length and same interior vertex angle.

## Analysis and Observations

For analysis purpose simple polygons such as triangle, quadrilateral, pentagon and hexagon are taken for experiment. The sides of these primary polygons are divided into 12 equal divisions for easy calculation and observation. A new polygon is formed by are connecting $1 / 12$ th of each side by straight lines.
Let it be area of such secondary polygon in drawing as A'and area of primary polygon as A. These values of A and $\mathrm{A}_{1}{ }^{\prime}, \mathrm{A}_{2}{ }^{\prime}, \mathrm{A}_{3}{ }^{\prime} \ldots . . \mathrm{A}_{11}{ }^{\prime}$ are measured and given in table 1, table 2, table 3 and table 4 for triangle, quadrilateral, pentagon and hexagon respectively.

## Triangle

Figure 1 is a triangle. Points $A, B$ and $C$ are the vertices of the triangle. In this figure side $A B$ is divided into 12 equal parts as
$A A_{1}=A_{1} A_{2}=A_{2} A_{3}=A_{3} A_{4}=A_{4} A_{5}=A_{5} A_{6}=\cdots=A_{11} B=\frac{A B}{12}$

## Research Article

Similarly, the sides BC and CA are divided into 12 equal parts as
$B B=B_{1} B_{2}=B_{2} B_{3}=B_{3} B_{4}=B_{4} B_{5}=B_{5} B_{6}=\cdots=B_{11} C=\frac{B C}{12}$
$\mathrm{CC}_{1}=\mathrm{C}_{1} \mathrm{C}_{2}=\mathrm{C}_{2} \mathrm{CA}_{3}=\mathrm{C}_{3} \mathrm{C}_{4}=\mathrm{C}_{4} \mathrm{C}_{5}=\mathrm{C}_{5} \mathrm{C}_{6}=\cdots=\mathrm{C}_{11} \mathrm{~A}=\frac{\mathrm{CA}}{12}$
In this figure another triangle connecting $A_{1}, B_{1}, C_{1}$ and $A_{1}$ is drawn. Similarly triangle $A_{1} B_{1} C_{1}$, $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2}, \mathrm{~A}_{3} \mathrm{~B}_{3} \mathrm{C}_{3} \ldots, \mathrm{~A}_{11} \mathrm{~B}_{11} \mathrm{C}_{11}$ was also drawn.


Figure 1: Triangle ABC and triangle $\mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1}$


Figure 2: Triangle ABC and triangle
$\mathrm{A}_{11} \mathrm{~B}_{11} \mathrm{C}_{11}$

Let it be $A=$ area of primary triangle $A B C, A_{1}{ }^{\prime}=$ area of secondary triangle $A_{1} B_{1} C_{1}, A_{2}^{\prime}=$ area of secondary triangle $A_{2} B_{2} C_{2} \ldots, A_{11}^{\prime}=$ area of secondary triangle $A_{11} B_{11} C_{11}$.
The area of triangles $A B C, A_{1} B_{1} C_{1}, A_{2} B_{2} C_{2}, A_{3} B_{3} C_{3} \ldots$ and $A_{11} B_{11} C_{11}$ were measured and tabulated in table 1.

Table 1: Area of inner triangles of triangle

| S.No. | Triangle of vertices | Area measured (Sq. units) |
| :--- | :---: | ---: |
| 1 | $\mathrm{ABC}_{1}$ | 72.7916 |
| 2 | $\mathrm{~A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1}$ | 56.1095 |
| 3 | $\mathrm{~A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2}$ | 42.4615 |
| 4 | $\mathrm{~A}_{3} \mathrm{~B}_{3} \mathrm{C}_{3}$ | 31.8459 |
| 5 | $\mathrm{~A}_{4} \mathrm{~B}_{4} \mathrm{C}_{4}$ | 24.2629 |
| 6 | $\mathrm{~A}_{5} \mathrm{~B}_{5} \mathrm{C}_{5}$ | 19.7140 |
| 7 | $\mathrm{~A}_{6} \mathrm{~B}_{6} \mathrm{C}_{6}$ | 18.1979 |
| 8 | $\mathrm{~A}_{7} \mathrm{~B}_{7} \mathrm{C}_{7}$ | 19.7140 |
| 9 | $\mathrm{~A}_{8} \mathrm{~B}_{8} \mathrm{C}_{8}$ | 24.2629 |
| 10 | $\mathrm{~A}_{9} \mathrm{~B}_{9} \mathrm{C}_{9}$ | 31.8459 |
| 11 | $\mathrm{~A}_{10} \mathrm{~B}_{10} \mathrm{C}_{10}$ | 42.4615 |
| 12 | $\mathrm{~A}_{11} \mathrm{~B}_{11} \mathrm{C}_{11}$ | 56.1095 |

$A B C$ measured from AutoCAD drawing (figure 1 and 2)
These measured areas were analyzed thoroughly and observed the following things (Ref: Figure 2).
(1) The area of $\Delta A_{1} B_{1} C_{1}=$ area of $\Delta A_{11} B_{11} C_{11}$

## Research Article

(2) The area of $\Delta \mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2}=$ area of $\Delta \mathrm{A}_{10} \mathrm{~B}_{10} \mathrm{C}_{10}$
..
(5) The area of $\Delta \mathrm{A}_{5} \mathrm{~B}_{5} \mathrm{C}_{5}=$ area of $\Delta \mathrm{A}_{7} \mathrm{~B}_{7} \mathrm{C}_{7}$

It is also observed that
(6) $\frac{\text { Area of } \Delta \mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1}}{\text { Area of } \triangle \mathrm{ABC}}=\frac{\text { Area of } \Delta \mathrm{A}_{11} \mathrm{~B}_{11} \mathrm{C}_{11}}{\text { Area of } \Delta \mathrm{ABC}}=\frac{56.1095}{72.7916}=0.77083$
(7) $\frac{\text { Area of } \Delta \mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2}}{\text { Area of } \Delta \mathrm{ABC}}=\frac{\text { Area of } \Delta \mathrm{A}_{10} \mathrm{~B}_{10} \mathrm{C}_{10}}{\text { Area of } \Delta \mathrm{ABC}}=\frac{42.4615}{72.7916}=0.58333$
$\ldots$
(10) $\frac{\text { Area of } \Delta \mathrm{A}_{6} \mathrm{~B}_{6} \mathrm{C}_{6}}{\text { Area of } \Delta \mathrm{ABC}}=\frac{18.1979}{72.7916}=0.25$

These calculated values have are given in table-5

## Quadrilateral

Figure 3 is a Quadrilateral. Points A, B, C and D are the vertices of the quadrilateral. In this figure side AB is divided into 12 equal parts as
$\mathrm{AA}_{1}=\mathrm{A}_{1} \mathrm{~A}_{2}=\mathrm{A}_{2} \mathrm{~A}_{3}=\mathrm{A}_{3} \mathrm{~A}_{4}=\mathrm{A}_{4} \mathrm{~A}_{5}=\mathrm{A}_{5} \mathrm{~A}_{6}=\cdots=\mathrm{A}_{11} \mathrm{~B}=\frac{\mathrm{AB}}{12}$
Similarly sides $\mathrm{BC}, \mathrm{CD}$ and DA are divided into 12 equal parts as
$\mathrm{BB}=\mathrm{B}_{1} \mathrm{~B}_{2}=\mathrm{B}_{2} \mathrm{~B}_{3}=\mathrm{B}_{3} \mathrm{~B}_{4}=\mathrm{B}_{4} \mathrm{~B}_{5}=\mathrm{B}_{5} \mathrm{~B}_{6}=\cdots=\mathrm{B}_{11} \mathrm{C}=\frac{\mathrm{BC}}{12}$
$\mathrm{CC}_{1}=\mathrm{C}_{1} \mathrm{C}_{2}=\mathrm{C}_{2} \mathrm{C}_{3}=\mathrm{C}_{3} \mathrm{C}_{4}=\mathrm{C}_{4} \mathrm{C}_{5}=\mathrm{C}_{5} \mathrm{C}_{6}=\cdots=\mathrm{C}_{11} \mathrm{D}=\frac{\mathrm{CD}}{12}$
$D_{1}=D_{1} D_{2}=D_{2} D_{3}=D_{3} D_{4}=D_{4} D_{5}=D_{5} D_{6}=\cdots=D_{11} A=\frac{D A}{12}$
In this figure another quadrilateral connecting $\mathrm{A}_{1}, \mathrm{~B}_{1}, \mathrm{C}_{1}, \mathrm{D}_{1}$ and $\mathrm{A}_{1}$ is drawn. Similarly quadrilateral $\mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1} \mathrm{D}_{1}, \mathrm{~A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2} \mathrm{D}_{2}, \mathrm{~A}_{3} \mathrm{~B}_{3} \mathrm{C}_{3} \mathrm{D}_{3} \ldots \mathrm{~A}_{11} \mathrm{~B}_{11} \mathrm{C}_{11} \mathrm{D}_{1}$ are also drawn.


Figure 3: Quadrilateral ABCD and $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2} \mathrm{D}_{2}$

The area of quadrilateral $\mathrm{ABCD}, \mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1} \mathrm{D}_{1}, \mathrm{~A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2} \mathrm{D}_{2}, \mathrm{~A}_{3} \mathrm{~B}_{3} \mathrm{C}_{3} \mathrm{D}_{3} \ldots$ and $\mathrm{A}_{11} \mathrm{~B}_{11} \mathrm{C}_{11} \mathrm{D}_{11}$ were measured and tabulated in table-2.

## Research Article

These measured areas were analyzed thoroughly and observed the following things.
(11) The area of quadrilateral $\mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1} \mathrm{D}_{1}=$ area of quadrilateral $\mathrm{A}_{11} \mathrm{~B}_{11} \mathrm{C}_{11} \mathrm{D}_{11}$
(12) The area of quadrilateral $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2} \mathrm{D}_{2}=$ area of quadrilateral $\mathrm{A}_{10} \mathrm{~B}_{10} \mathrm{C}_{10} \mathrm{D}_{10}$ (Ref: Figure 4)
...
(15) The area of quadrilateral $\mathrm{A}_{5} \mathrm{~B}_{5} \mathrm{C}_{5} \mathrm{D}_{5}=$ area of quadrilateral $\mathrm{A}_{7} \mathrm{~B}_{7} \mathrm{C}_{7} \mathrm{D}_{7}$

Table-2: Area of inner quadrilaterals of quadrilateral

| S.No. | Quadrilateral of vertices | Area measured (Sq. units) |
| :--- | :---: | ---: |
| 1 | $\mathrm{ABCD}^{2}$ | 90.8135 |
| 2 | $\mathrm{~A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1} \mathrm{D}_{1}$ | 76.9392 |
| 3 | $\mathrm{~A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2} \mathrm{D}_{2}$ | 65.5875 |
| 4 | $\mathrm{~A}_{3} \mathrm{~B}_{3} \mathrm{C}_{3} \mathrm{D}_{3}$ | 56.7584 |
| 5 | $\mathrm{~A}_{4} \mathrm{~B}_{4} \mathrm{C}_{4} \mathrm{D}_{4}$ | 50.7584 |
| 6 | $\mathrm{~A}_{5} \mathrm{~B}_{5} \mathrm{C}_{5} \mathrm{D}_{5}$ | 46.6681 |
| 7 | $\mathrm{~A}_{6} \mathrm{~B}_{6} \mathrm{C}_{6} \mathrm{D}_{6}$ | 45.4068 |
| 8 | $\mathrm{~A}_{7} \mathrm{~B}_{7} \mathrm{C}_{7} \mathrm{D}_{7}$ | 46.6681 |
| 9 | $\mathrm{~A}_{8} \mathrm{~B}_{8} \mathrm{C}_{8} \mathrm{D}_{8}$ | 50.7584 |
| 10 | $\mathrm{~A}_{9} \mathrm{~B}_{9} \mathrm{C}_{9} \mathrm{D}_{9}$ | 56.7584 |
| 11 | $\mathrm{~A}_{10} \mathrm{~B}_{10} \mathrm{C}_{10} \mathrm{D}_{10}$ | 65.5875 |
| 12 | $\mathrm{~A}_{11} \mathrm{~B}_{11} \mathrm{C}_{11} \mathrm{D}_{11}$ | 76.9392 |
| ABCD measured from  |  |  |

ABCD measured from AutoCAD drawing (figure 3 and 4)
and also observed that
(16) $\frac{\text { Area of quadrilateral } \mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1} \mathrm{D}_{1}}{\text { Area of quadrilateral } \mathrm{ABCD}}=\frac{\text { Area of quadrilateral } \mathrm{A}_{11} \mathrm{~B}_{11} \mathrm{C}_{11} \mathrm{D}_{11}}{\text { Area of quadrilateral } \mathrm{ABCD}}=\frac{76.9392}{90.8135}$
$=0.84722$
(17) $\frac{\text { Area of quadrilateral } \mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2} \mathrm{D}_{2}}{\text { Area of quadrilateral } \mathrm{ABCD}}=\frac{\text { Area of quadrilateral } \mathrm{A}_{10} \mathrm{~B}_{10} \mathrm{C}_{10} \mathrm{D}_{10}}{\text { Area of quadrilateral } \mathrm{ABCD}}=\frac{65.5875}{90.8135}$
$=0.72222$
...
(20) $\frac{\text { Area of quadrilateral } \mathrm{A}_{6} \mathrm{~B}_{6} \mathrm{C}_{6} \mathrm{D}_{6}}{\text { Area of quadrilateral } \mathrm{ABCD}}=\frac{45.4068}{90.8135}=0.5$

The calculated values have are given in table-5
Pentagon
Figure 5 is a Pentagon. Points A, B, C, D and E are the vertices of the pentagon. In this figure side AB is divided into 12 equal parts as
$\mathrm{AA}_{1}=\mathrm{A}_{1} \mathrm{~A}_{2}=\mathrm{A}_{2} \mathrm{~A}_{3}=\mathrm{A}_{3} \mathrm{~A}_{4}=\mathrm{A}_{4} \mathrm{~A}_{5}=\mathrm{A}_{5} \mathrm{~A}_{6}=\cdots=\mathrm{A}_{11} \mathrm{~B}=\frac{\mathrm{AB}}{12}$
Similarly side BC, CD, DE and EA are divided into 12 equal parts as
$\mathrm{BB}=\mathrm{B}_{1} \mathrm{~B}_{2}=\mathrm{B}_{2} \mathrm{~B}_{3}=\mathrm{B}_{3} \mathrm{~B}_{4}=\mathrm{B}_{4} \mathrm{~B}_{5}=\mathrm{B}_{5} \mathrm{~B}_{6}=\cdots=\mathrm{B}_{11} \mathrm{C}=\frac{\mathrm{BC}}{12}$
$\mathrm{CC}_{1}=\mathrm{C}_{1} \mathrm{C}_{2}=\mathrm{C}_{2} \mathrm{C}_{3}=\mathrm{C}_{3} \mathrm{C}_{4}=\mathrm{C}_{4} \mathrm{C}_{5}=\mathrm{C}_{5} \mathrm{C}_{6}=\cdots=\mathrm{C}_{11} \mathrm{D}=\frac{\mathrm{CD}}{12}$
$D_{1}=D_{1} D_{2}=D_{2} D_{3}=D_{3} D_{4}=D_{4} D_{5}=D_{5} D_{6}=\cdots=D_{11} E=\frac{D E}{12}$
$\mathrm{EE}_{1}=\mathrm{E}_{1} \mathrm{E}_{2}=\mathrm{E}_{2} \mathrm{E}_{3}=\mathrm{E}_{3} \mathrm{E}_{4}=\mathrm{E}_{4} \mathrm{E}_{5}=\mathrm{E}_{5} \mathrm{E}_{6}=\cdots=\mathrm{E}_{11} \mathrm{~A}=\frac{\mathrm{EA}}{12}$

## Research Article

In this figure another pentagon connecting $\mathrm{A}_{1}, \mathrm{~B}_{1}, \mathrm{C}_{1}, \mathrm{D}_{1} \mathrm{E}_{1}$ and $\mathrm{A}_{1}$ is also drawn. Similarly pentagon $\mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1} \mathrm{D}_{1} \mathrm{E}_{1}, \mathrm{~A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{E}_{2}, \mathrm{~A}_{3} \mathrm{~B}_{3} \mathrm{C}_{3} \mathrm{D}_{3} \mathrm{E}_{3} \ldots \mathrm{~A}_{11} \mathrm{~B}_{11} \mathrm{C}_{11} \mathrm{D}_{11} \mathrm{E}_{11}$ are also drawn. Therefore,


Figure 5: Pentagon ABCDE and $\mathbf{A}_{3} B_{3} C_{3} D_{3} E_{3}$


Figure 6: Pentagon ABCDE and $\mathrm{A}_{9} \mathrm{~B}_{9} \mathrm{C}_{9} \mathrm{D}_{9} \mathrm{E}_{\boldsymbol{9}}$

The area of pentagon $\mathrm{ABCDE}, \mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1} \mathrm{D}_{1} \mathrm{E}_{1}, \mathrm{~A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{E}_{2}, \mathrm{~A}_{3} \mathrm{~B}_{3} \mathrm{C}_{3} \mathrm{D}_{3} \mathrm{E}_{3} \ldots \mathrm{~A}_{11} \mathrm{~B}_{11} \mathrm{C}_{11} \mathrm{D}_{11} \mathrm{E}_{11}$ were measured and tabulated in table 3.

Table 3: Area of inner pentagons of pentagon

| S.No. | Pentagon of vertices | Area measured (Sq. units) |
| :--- | :---: | ---: |
| 1 | $\mathrm{ABCDE}^{2}$ | 96.4113 |
| 2 | $\mathrm{~A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1} \mathrm{D}_{1} \mathrm{E}_{1}$ | 86.2222 |
| 3 | $\mathrm{~A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{E}_{2}$ | 77.8556 |
| 4 | $\mathrm{~A}_{3} \mathrm{~B}_{3} \mathrm{C}_{3} \mathrm{D}_{3} \mathrm{E}_{3}$ | 71.4016 |
| 5 | $\mathrm{~A}_{4} \mathrm{~B}_{4} \mathrm{C}_{4} \mathrm{D}_{4} \mathrm{E}_{4}$ | 66.7702 |
| 6 | $\mathrm{~A}_{5} \mathrm{~B}_{5} \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{E}_{5}$ | 63.9913 |
| 7 | $\mathrm{~A}_{6} \mathrm{~B}_{6} \mathrm{C}_{6} \mathrm{D}_{6} \mathrm{E}_{6}$ | 63.0650 |
| 8 | $\mathrm{~A}_{7} \mathrm{~B}_{7} \mathrm{C}_{7} \mathrm{D}_{7} \mathrm{E}_{7}$ | 63.9913 |
| 9 | $\mathrm{~A}_{8} \mathrm{~B}_{8} \mathrm{C}_{7} \mathrm{D}_{8} \mathrm{E}_{8}$ | 66.7702 |
| 10 | $\mathrm{~A}_{9} \mathrm{~B}_{9} \mathrm{C}_{9} \mathrm{D}_{9} \mathrm{E}_{9}$ | 71.4016 |
| 11 | $\mathrm{~A}_{10} \mathrm{~B}_{10} \mathrm{C}_{10} \mathrm{D}_{10} \mathrm{E}_{10}$ | 77.8856 |
| 12 | $\mathrm{~A}_{11} \mathrm{~B}_{11} \mathrm{C}_{11} \mathrm{C}_{11} \mathrm{D}_{11} \mathrm{E}_{11}$ | 86.2222 |

ABCDE measured from AutoCAD drawing (figure 5 and 6 )
(21) The area of pentagon $A_{1} B_{1} C_{1} D_{1} E_{1}=$ area of pentagon $A_{11} B_{11} C_{11} D_{11} E_{11}$
(22) The area of pentagon $A_{2} B_{2} C_{2} D_{2} E_{2}=$ area of pentagon $A_{10} B_{10} C_{10} D_{10} E_{10}$ (Ref: Figure 4)
(25) The area of pentagon $\mathrm{A}_{5} \mathrm{~B}_{5} \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{E}_{5}=$ area of pentagon $\mathrm{A}_{7} \mathrm{~B}_{7} \mathrm{C}_{7} \mathrm{D}_{7} \mathrm{E}_{7}$

And also observed that
(26) $\frac{\text { Area of pentagon } \mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1} \mathrm{D}_{1} \mathrm{E}_{1}}{\text { Area of pentagon } \mathrm{ABCDE}}=\frac{\text { Area of pentagon } \mathrm{A}_{11} \mathrm{~B}_{11} \mathrm{C}_{11} \mathrm{D}_{11} \mathrm{E}_{11}}{\text { Area of pentagon } \mathrm{ABCDE}}=\frac{86.2222}{96.4113}$
$=0.89432$

## Research Article

(27) $\frac{\text { Area of pentagon } \mathrm{A}_{4} \mathrm{~B}_{4} \mathrm{C}_{4} \mathrm{D}_{4} \mathrm{E}_{4}}{\text { Area of pentagon ABCDE }}=\frac{\text { Area of pentagon } \mathrm{A}_{8} \mathrm{~B}_{8} \mathrm{C}_{8} \mathrm{D}_{8} \mathrm{E}_{8}}{\text { Area of pentagon } \mathrm{ABCDE}}=\frac{66.7702}{96.4113}$
$=0 . .69256$
(30) $\frac{\text { Area of pentagon } \mathrm{A}_{6} \mathrm{~B}_{6} \mathrm{C}_{6} \mathrm{D}_{6} \mathrm{E}_{6}}{\text { Area of pentagon } \mathrm{ABCDE}}=\frac{63.0650}{96.4113}=0.65412$

The calculated values are shown in table 5

## Hexagon

Figure 7 is a Hexagon. Points A, B, C, D, E and F are the vertices of the hexagon. In this figure side AB is divided into 12 equal parts as
$\mathrm{AA}_{1}=\mathrm{A}_{1} \mathrm{~A}_{2}=\mathrm{A}_{2} \mathrm{~A}_{3}=\mathrm{A}_{3} \mathrm{~A}_{4}=\mathrm{A}_{4} \mathrm{~A}_{5}=\mathrm{A}_{5} \mathrm{~A}_{6}=\cdots=\mathrm{A}_{11} \mathrm{~B}=\frac{\mathrm{AB}}{12}$
Similarly sides BC, CD, DE, EF and FA are also divided into 12 equal parts and side FA is divided into 12 equal parts as
$B B=B_{1} B_{2}=B_{2} B_{3}=B_{3} B_{4}=B_{4} B_{5}=B_{5} B_{6}=\cdots=B_{11} C=\frac{B C}{12}$
$\mathrm{CC}_{1}=\mathrm{C}_{1} \mathrm{C}_{2}=\mathrm{C}_{2} \mathrm{C}_{3}=\mathrm{C}_{3} \mathrm{C}_{4}=\mathrm{C}_{4} \mathrm{C}_{5}=\mathrm{C}_{5} \mathrm{C}_{6}=\cdots=\mathrm{C}_{11} \mathrm{D}=\frac{\mathrm{CD}}{12}$
$D_{1}=D_{1} D_{2}=D_{2} D_{3}=D_{3} D_{4}=D_{4} D_{5}=D_{5} D_{6}=\cdots=D_{11} E=\frac{D E}{12}$
$E E_{1}=E_{1} E_{2}=E_{2} E_{3}=E_{3} E_{4}=E_{4} E_{5}=E_{5} E_{6}=\cdots=E_{11} F=\frac{E F}{12}$
$\mathrm{FF}_{1}=\mathrm{F}_{1} \mathrm{~F}_{2}=\mathrm{F}_{2} \mathrm{~F}_{3}=\mathrm{F}_{3} \mathrm{~F}_{4}=\mathrm{F}_{4} \mathrm{~F}_{5}=\mathrm{F}_{5} \mathrm{~F}_{6}=\cdots=\mathrm{F}_{11} \mathrm{~A}=\frac{\mathrm{FA}}{12}$
In this figure another hexagon connecting $\mathrm{A}_{1}, \mathrm{~B}_{1}, \mathrm{C}_{1}, \mathrm{D}_{1}, \mathrm{E}_{1}, \mathrm{~F}_{1}$ and $\mathrm{A}_{1}$ is also drawn.
Similarly pentagon $A_{1} B_{1} C_{1} D_{1} E_{1} F_{1}, A_{2} B_{2} C_{2} D_{2} E_{2} F_{2}, A_{3} B_{3} C_{3} D_{3} \mathrm{E}_{3} \mathrm{~F}_{3} \ldots \mathrm{~A}_{11} \mathrm{~B}_{11} \mathrm{C}_{11} \mathrm{D}_{11} \mathrm{E}_{11} \mathrm{~F}_{11}$ are also drawn.


Figure 7: Hexagon ABCDEF and $\mathbf{A}_{5} \mathbf{B}_{5} \mathbf{C}_{5} \mathrm{D}_{5} \mathrm{E}_{5} \mathrm{~F}_{5}$


Figure 8: Hexagon ABCDEF and $\mathbf{A}_{7} \mathbf{B}_{7} \mathbf{C}_{7} \mathbf{D}_{7} \mathbf{E}_{7} \mathbf{F}_{7}$

## Research Article

The area of hexagon ABCDEF, $\mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1} \mathrm{D}_{1} \mathrm{E}_{1} \mathrm{~F}_{1}, \quad \mathrm{~A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{E}_{2} \mathrm{~F}_{2}, \quad \mathrm{~A}_{3} \mathrm{~B}_{3} \mathrm{C}_{3} \mathrm{D}_{3} \mathrm{E}_{3} \mathrm{~F}_{3} \ldots$
$\mathrm{A}_{11} \mathrm{~B}_{11} \mathrm{C}_{11} \mathrm{D}_{11} \mathrm{E}_{11} \mathrm{~F}_{11}$ are measured and tabulated in table 4.
(31) The area of hexagon $A_{1} B_{1} C_{1} D_{1} E_{1} F_{1}=$ area of hexagon $A_{11} B_{11} C_{11} D_{11} E_{11} F_{11}$
(32) The area of hexagon $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{E}_{2} \mathrm{~F}_{2}=$ area of hexagon $\mathrm{A}_{10} \mathrm{~B}_{10} \mathrm{C}_{10} \mathrm{D}_{10} \mathrm{E}_{10} \mathrm{~F}_{10}$ (Ref: Figure 8)
(35) The area of hexagon $\mathrm{A}_{5} \mathrm{~B}_{5} \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{E}_{5} \mathrm{~F}_{5}=$ area of hexagon $\mathrm{A}_{7} \mathrm{~B}_{7} \mathrm{C}_{7} \mathrm{D}_{7} \mathrm{E}_{7} \mathrm{~F}_{7}$

Table 4: Area of inner hexagons of hexagon

| S.No. | Hexagon of vertices | Area measured (Sq. units) |
| :--- | :---: | ---: |
| 1 | $\mathrm{ABCDEF}^{2}$ | 147.9697 |
| 2 | $\mathrm{~A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1} \mathrm{D}_{1} \mathrm{E}_{1} \mathrm{~F}_{1}$ | 136.6803 |
| 3 | $\mathrm{~A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{E}_{2} \mathrm{~F}_{2}$ | 127.4435 |
| 4 | $\mathrm{~A}_{3} \mathrm{~B}_{3} \mathrm{C}_{3} \mathrm{D}_{3} \mathrm{E}_{3} \mathrm{~F}_{3}$ | 120.2593 |
| 5 | $\mathrm{~A}_{4} \mathrm{~B}_{4} \mathrm{C}_{4} \mathrm{D}_{4} \mathrm{E}_{4} \mathrm{~F}_{4}$ | 115.1278 |
| 6 | $\mathrm{~A}_{5} \mathrm{~B}_{5} \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{E}_{5} \mathrm{~F}_{5}$ | 112.0488 |
| 7 | $\mathrm{~A}_{6} \mathrm{~B}_{6} \mathrm{C}_{6} \mathrm{D}_{6} \mathrm{E}_{6} \mathrm{~F}_{6}$ | 111.0225 |
| 8 | $\mathrm{~A}_{7} \mathrm{~B}_{7} \mathrm{C}_{7} \mathrm{D}_{7} \mathrm{E}_{7} \mathrm{~F}_{7}$ | 112.0488 |
| 9 | $\mathrm{~A}_{8} \mathrm{~B}_{8} \mathrm{C}_{8} \mathrm{D}_{8} \mathrm{E}_{8} \mathrm{~F}_{8}$ | 115.1278 |
| 10 | $\mathrm{~A}_{9} \mathrm{~B}_{9} \mathrm{C}_{9} \mathrm{D}_{9} \mathrm{E}_{9} \mathrm{~F}_{9}$ | 120.2593 |
| 11 | $\mathrm{~A}_{10} \mathrm{~B}_{10} \mathrm{C}_{10} \mathrm{D}_{10} \mathrm{E}_{10} \mathrm{~F}_{10}$ | 127.4435 |
| 12 | $\mathrm{~A}_{11} \mathrm{~B}_{11} \mathrm{C}_{11} \mathrm{D}_{11} \mathrm{E}_{11} \mathrm{~F}_{11}$ | 136.6803 |

$A B C D E F$ measured from AutoCAD drawing (figure 7 and 8)
and also observed that
(36) $\frac{\text { Area of hexagon } \mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1} \mathrm{D}_{1} \mathrm{E}_{1} \mathrm{~F}_{1}}{\text { Area of hexagon } \mathrm{ABCDEF}}=\frac{\text { Area of hexagon } \mathrm{A}_{11} \mathrm{~B}_{11} \mathrm{C}_{11} \mathrm{D}_{11} \mathrm{E}_{11} \mathrm{~F}_{11}}{\text { Area of hexagon } \mathrm{ABCDEF}}=\frac{136.6803}{147.9697}$ $=0.9237$
(37) $\frac{\text { Area of hexagon } \mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{E}_{2} \mathrm{~F}_{2}}{\text { Area of hexagon } \mathrm{ABCDEF}}=\frac{\text { Area of hexagon } \mathrm{A}_{10} \mathrm{~B}_{10} \mathrm{C}_{10} \mathrm{D}_{10} \mathrm{E}_{10} \mathrm{~F}_{10}}{\text { Area of hexagon ABCDEF }}=\frac{127.4435}{147.9697}$
$=0.86128$
(39) $\frac{\text { Area of hexagon } \mathrm{A}_{5} \mathrm{~B}_{5} \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{E}_{5} \mathrm{~F}_{5}}{\text { Area of hexagon } \mathrm{ABCDEF}}=\frac{\text { Area of hexagon } \mathrm{A}_{7} \mathrm{~B}_{7} \mathrm{C}_{7} \mathrm{D}_{7} \mathrm{E}_{7} \mathrm{~F}_{7}}{\text { Area of hexagon } \mathrm{ABCDEF}}=\frac{112.0488}{147.9697}$ $=0.75724$
(40) $\frac{\text { Area of hexagon } \mathrm{A}_{6} \mathrm{~B}_{6} \mathrm{C}_{6} \mathrm{D}_{6} \mathrm{E}_{6} \mathrm{~F}_{6}}{\text { Area of pentagon } \mathrm{ABCDEF}}=\frac{111.0225}{147.9697}=0.75031$

The calculated values are shown in table 5.
The values obtained from the drawing for various geometrical shapes of polygon were analyzed by the author and developed a formula based on the results of $\mathrm{A}^{\prime} / \mathrm{A}$ obtained from the experimental drawings defined above as follows:
$\frac{\mathrm{A}^{\prime}}{\mathrm{A}}=1-\mathrm{kf}(1-\mathrm{f})$
where, $\quad \mathrm{A}=$ Area of prime polygon
$\mathrm{A}^{\prime}=$ Area of partial polygon by connecting secondary poygon
$\mathrm{k}=4 \sin ^{2}\left(\frac{180^{\circ}}{\mathrm{n}}\right)$

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online)
An Online International Journal Available at http://www.cibtech.org/jpms.htm
2013 Vol. 3 (3) July-September, pp.8-16/Kalaimaran Ara

## Research Article

$\mathrm{f}=\frac{1}{12}, \frac{2}{12}, \frac{3}{12} \ldots, \frac{11}{12}$ and $\frac{12}{12}$
The values of $\mathrm{A}^{\prime} / \mathrm{A}$ calculated from above formula are also tabulated in table-5 for comparison. It is also proved that the formula is in order.

Table 5: Consolidated values of area of inner polygons in polygon shown in figure 1, 2, 3, 4, 5, 6, 7 and 8

| S.No | Name of Polygon | No. of sides of Polygon (n) | d = Part of m no of equal division | Value obtained from drawing |  | Value calculated by formula |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\mathbf{A}^{\prime}$ | $\mathbf{A}^{\prime} / \mathbf{A}$ | $\mathrm{k}=4 \sin ^{2}(180 / \mathrm{n})$ | $\mathrm{f}=\mathrm{d} / \mathbf{1 2}$ | $A^{\prime} / \mathrm{A}=1-\mathrm{kf}(1-\mathrm{f})$ |
| 1 | Triangle | 3 | 0 | 72.7916 | 1.0 | 3.0 | 0.0 | 1.0 |
| 2 | Triangle | 3 | 1 | 56.1095 | 0.77082 | 3.0 | 0.08333 | 0.77083 |
| 3 | Triangle | 3 | 2 | 42.4615 | 0.58333 | 3.0 | 0.16667 | 0.58333 |
| 4 | Triangle | 3 | 3 | 31.8459 | 0.43749 | 3.0 | 0.25 | 0.4375 |
| 5 | Triangle | 3 | 4 | 24.2629 | 0.33332 | 3.0 | 0.33333 | 0.33333 |
| 6 | Triangle | 3 | 5 | 19.7140 | 0.27083 | 3.0 | 0.41667 | 0.27083 |
| 7 | Triangle | 3 | 6 | 18.1979 | 0.25 | 3.0 | 0.5 | 0.25 |
| 8 | Quadrilateral | 4 | 0 | 90.8135 | 1.0 | 2.0 | 0.0 | 1.0 |
| 9 | Quadrilateral | 4 | 1 | 76.9392 | 0.84722 | 2.0 | 0.08333 | 0.84722 |
| 10 | Quadrilateral | 4 | 2 | 65.5875 | 0.72222 | 2.0 | 0.16667 | 0.72222 |
| 11 | Quadrilateral | 4 | 3 | 56.7584 | 0.62500 | 2.0 | 0.25 | 0.625 |
| 12 | Quadrilateral | 4 | 4 | 50.4519 | 0.55556 | 2.0 | 0.33333 | 0.55556 |
| 13 | Quadrilateral | 4 | 5 | 46.6681 | 0.51389 | 2.0 | 0.41667 | 0.51389 |
| 14 | Quadrilateral | 4 | 6 | 45.4068 | 0.5 | 2.0 | 0.5 | 0.5 |
| 15 | Pentagon | 5 | 0 | 96.4113 | 1.0 | 1.38197 | 0.0 | 1.0 |
| 16 | Pentagon | 5 | 1 | 86.2222 | 0.89432 | 1.38197 | 0.08333 | 0.89443 |
| 17 | Pentagon | 5 | 2 | 77.8856 | 0.80785 | 1.38197 | 0.16667 | 0.80806 |
| 18 | Pentagon | 5 | 3 | 71.4016 | 0.74059 | 1.38197 | 0.25 | 0.74088 |
| 19 | Pentagon | 5 | 4 | 66.7702 | 0.69256 | 1.38197 | 0.33333 | 0.69290 |
| 20 | Pentagon | 5 | 5 | 63.9913 | 0.66373 | 1.38197 | 0.41667 | 0.66411 |
| 21 | Pentagon | 5 | 6 | 63.0650 | 0.65412 | 1.38197 | 0.5 | 0.65451 |
| 22 | Hexagon | 6 | 0 | 147.9697 | 1.0 | 1.0 | 0.0 | 1.0 |
| 23 | Hexagon | 6 | 1 | 136.6803 | 0.92370 | 1.0 | 0.08333 | 0.92361 |
| 24 | Hexagon | 6 | 2 | 127.4435 | 0.86128 | 1.0 | 0.16667 | 0.86111 |
| 25 | Hexagon | 6 | 3 | 120.2593 | 0.81273 | 1.0 | 0.25 | 0.8125 |
| 26 | Hexagon | 6 | 4 | 115.1278 | 0.77805 | 1.0 | 0.33333 | 0.77778 |
| 27 | Hexagon | 6 | 5 | 112.0488 | 0.75724 | 1.0 | 0.41667 | 0.75694 |
| 28 | Hexagon | 6 | 6 | 111.0225 | 0.75031 | 1.0 | 0.5 | 0.75 |

## New Property Developed on Area of Polygon

The values shown in the table-5 are examined thoroughly and observed that the result A'/A obtained from the experimental drawings and calculated from formula are found same. Therefore, the author has developed a common property on area of polygon as given below.
If $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \ldots, \mathrm{Z}$ are the vertices of a N -gon and side AB is equally divided into ' m ' parts such that $\mathrm{AA}_{1}, \mathrm{AA}_{2}, \ldots, \mathrm{AA}_{m-1}$ and $\mathrm{A}_{\mathrm{m}-1} \mathrm{~B}$, side BC is equally divided into ' m ' parts such that $\mathrm{BB}_{1}, \mathrm{BB}_{2}, \ldots$, $\mathrm{BB}_{\mathrm{m}-1}$ and $\mathrm{B}_{\mathrm{m}-1} \mathrm{C}$, similarly side ZA is equally divided into ' m ' parts such that $\mathrm{ZZ}_{1}, \mathrm{ZZ}_{2}, \ldots, \mathrm{ZZ}_{\mathrm{m}-1}$ and $\mathrm{Z}_{\mathrm{m}-1} \mathrm{~A}$.Therefore,
$A A_{1}=A_{1} A_{2}=A_{2} A_{3}=A_{3} A_{4}=A_{4} A_{5}=A_{5} A_{6}=\cdots=A_{m-1} B=\frac{A B}{m}$
$\mathrm{BB}_{1}=\mathrm{B}_{1} \mathrm{~B}_{2}=\mathrm{B}_{2} \mathrm{~B}_{3}=\mathrm{B}_{3} \mathrm{~B}_{4}=\mathrm{B}_{4} \mathrm{~B}_{5}=\mathrm{B}_{5} \mathrm{~B}_{6}=\cdots=\mathrm{B}_{\mathrm{m}-1} \mathrm{C}=\frac{\mathrm{BC}}{\mathrm{m}}$

## Research Article

$Y Y_{1}=Y_{1} Y_{2}=Y_{2} Y_{3}=Y_{3} Y_{4}=Y_{4} Y_{5}=Y_{5} Y_{6}=\cdots=Y_{m-1} Z=\frac{Y Z}{m}$
$\mathrm{ZZ}_{1}=\mathrm{Z}_{1} \mathrm{Z}_{2}=\mathrm{Z}_{2} \mathrm{~F}_{3}=\mathrm{Z}_{3} \mathrm{Z}_{4}=\mathrm{Z}_{4} \mathrm{Z}_{5}=\mathrm{Z}_{5} \mathrm{Z}_{6}=\cdots=\mathrm{Z}_{\mathrm{m}-1} \mathrm{~A}=\frac{\mathrm{ZA}}{\mathrm{m}}$
and the following statement
(i) $\frac{\text { Area } A_{1} B_{1} C_{1} D_{1} \ldots \mathrm{Z}_{1} \mathrm{~A}_{1}}{\text { Area ABCDEF } \ldots \mathrm{Z}}=\frac{\text { Area } \mathrm{A}_{\mathrm{m}-1} \mathrm{~B}_{\mathrm{m}-1} \mathrm{C}_{\mathrm{m}-1} \mathrm{D}_{\mathrm{m}-1} \ldots \mathrm{Z}_{\mathrm{m}-1} \mathrm{~A}_{\mathrm{m}-1}}{\text { Area ABCDEF } \ldots \mathrm{Z}}=1-\mathrm{kf}_{1}\left(1-f_{1}\right)$
(ii) $\frac{\text { Area } A_{2} B_{2} C_{2} D_{2} \ldots Z_{2} A_{2}}{\text { Area ABCDEF } \ldots \mathrm{Z}}=\frac{\operatorname{Area} A_{m-2} B_{m-2} C_{m-2} D_{m-2} \ldots Z_{m-2} A_{m-2}}{\text { Area ABCDEF } \ldots Z}=1-\mathrm{kf}_{2}\left(1-f_{2}\right)$
...
...
$\frac{\text { Area } \mathrm{A}_{\mathrm{m} / 2} \mathrm{~B}_{\mathrm{m} / 2} \mathrm{C}_{\mathrm{m} / 2} \ldots \mathrm{Z}_{\mathrm{m} / 2} \mathrm{~A}_{\mathrm{m} / 2}}{\text { Area ABCDEF } \ldots \mathrm{Z}}=1-\mathrm{kf}_{\mathrm{m} / 2}\left(1-\mathrm{f}_{\mathrm{m} / 2}\right)$
is always true.
Where,
$\mathrm{m}=$ Number of parts equally divided of each side of the polygon.
$\mathrm{f}_{1}=\frac{1}{\mathrm{~m}}, \mathrm{f}_{2}=\frac{2}{\mathrm{~m}}, \mathrm{f}_{3}=\frac{3}{\mathrm{~m}}, \mathrm{f}_{4}=\frac{4}{\mathrm{~m}} \ldots ., \mathrm{f}_{\mathrm{m} / 2}=\frac{1}{2}$
$\mathrm{k}=4 \sin ^{2}\left(\frac{180^{\circ}}{\mathrm{n}}\right)$
$\mathrm{n}=$ Number of sides of the polygon
Note: This formula is applicable for either concave or convex polygon but not for complex polygon since, the complex polygon can be treated as combination of some other polygons.

## CONCLUSION

In this article, the experimental analysis has been carried out with necessary drawings on area of polygon obtained by connecting relevant points which are obtained by equally dividing the each side of the polygon. Finally a general property has been developed based on the data obtained from the experiment. This property may be very useful for mechanical fabrication (John Sinclair, 2003) works. It may also be useful for the researchers who are interested in area of polygon and geometry.

## REFERENCES

Eric Weisstein W (2003). CRC Concise Encyclopedia of Mathematics, 2nd edition (New York: CRC Press of Wolfram Research Inc.) 2297, 811, 3152, 556, 499, 2697, 488, 2522.
John Sinclair (2003). Collins Advanced Learners English Dictionary, 4th edition (Glasgow United Kingdom: Harper Collins Publishers) 507.

