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ABSTRACT 

The Bianchi type-IX cosmological models with binary mixture of perfect fluid (PF) and anisotropic dark 

energy (DE) have been studied. In order to obtain a unique solution, it is assumed that the energy 
conservation equation of the PF and DE vanishes separately together with a special law for the mean 

Hubble parameter which yields a constant value of the deceleration parameter.To have a general 

description of an anisotropic DE component in terms of its equation of state (EoS) 
)(de , two skewness 

parameters   ,  have been introduced. It has been found out that the anisotropic distribution of DE 

leads to the present accelerated expansion of the universe. The geometrical and physical parameters of the 

model are studied. The analysis of the model reveals that the present acceleration, isotropy of the universe 

turns out to be natural consequences of DE.    
 

Key Words: Anisotropic Dark Energy, Perfect Fluid, Bianchi Type-IX Universe. 

 

INTRODUCTION 
The expansion history of the universe indicates that, the universe is currently experiencing a phase of 

accelerated expansion. In 1998, two teams studying distant type Ia supernovae (SNeIa) independently 

presented evidence of expansion (Riess et al.,2004; Perlmutter et al.,1999; Spergel et al., 2007; Wood-
Vasey et al.,2007; Davis et al.,2007), and confirmed later by cross checks from the cosmic microwave 

background radiation (Bennett et al.,2003; Spergel et al.,2003) and large scale structure (Tegmarket 

al.,2004; Abazajian et al.,2003, 2004a, 2004b; Hawkins et al.,2003). To explain the cosmic positive 
acceleration, mysterious DE has been proposed. Several DE models are distinguished using variable EoS

p  ( p  is the field pressure and   is its energy density) during evolution of the universe. Many 

cosmologists have studied the cosmological models by considering PF or ordinary matter present in the 
universe. Thus, the researchers are motivated to consider the cosmological models of the universe filled 

with some exotic type of matter such as DE along with usual PF. Kremer (2003) has considered the 

universe containing a binary mixture whose constituents are described by a Van der Walls fluid and a 

dark energy density. In these studies the authors considered mainly a spatially flat, homogeneous and 
isotropic universe described by a FRW metric. Khalatnikov and Kamenshchik (2003) and Saha (2005, 

2006) have studied Bianchi type-I cosmological model in the presence of perfect fluid and dark energy 

given by cosmological constant. Adhav et al., (2010, 2011) has studied higher dimensional cosmological 
models with a binary mixture of perfect fluid and dark energy. Katore et al., (2011a, 2011b, 2011c, 2013) 

has considered Bianchi type-III, Bianchi type-VI0, Plane symmetric and Kaluza-Klein cosmological 

models with a binary mixture of PF and DE. The role of DE in several different cosmological models of 

universe has been studied recently by Tade and Sambhe (2012), Kumar and Akarsu (2012), Singh and 
Chaubey (2009). 

Bianchi type-IX universe are studied by the number of cosmologists because the solutions of Robertson 

Walker universe with positive curvature, the de-Sitter universe, the Taub -NUT solutions etc. are of 
Bianchi type-IX space-times. These models are in general anisotropic and allow not only expansion but 

also rotation and shear. Waller (1984) has studied dynamical effects of spatially homogeneous 

electromagnetic fluid on anisotropic Bianchi type-IX models. Bali and Dave (2001) have investigated 
Bianchi type-IX string cosmological models in General Relativity. Bianchi type-IX stiff fluid tilted 
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cosmological models with bulk viscosity have been investigated by Bali and Kumawat (2011). Ghate and 
Sontakke (2013a, 2013b) have studied Bianchi type-IX cosmological models with anisotropic DE and DE 

model in Brans-Dicke theory of gravitation. 

In this paper, the Bianchi type-IX space-timeshas been taken up for the study consisting of a binary 
mixture of anisotropic DE and PF. This work is organized as follows: In Section 2, the model and field 

equations have been presented. The field equations have been solved in Section 3 by using deceleration 

parameter. The physical and geometrical properties of the model have been discussed in Section 4. In the 

last Section 5, concluding remarks have been expressed. 

Field Equations 

Bianchi type-IX metric is considered in the form 

  ydxdzadzyaybdybdxadtds cos2cossin 222222222222   ,                       (1) 

Where ba,  are scales factors and are functions of cosmic time t . 

The model has one transverse direction x , and two equivalent longitudinal directions y  and z . 

In natural units ( 1,18  cG ), Einstein’s field equations in case of a binary mixture of PF and 

anisotropic DE components are 
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ed
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jijiji TTRgRG 
2

1
,                           (2) 

with 
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where, jig is the metric potentials with 1ji

ij uug ; 
iu  is the flow vector; jiR  is the Ricci tensor; R  is 

the Ricci scalar;
)( fp  and 

)( ed are the energy density of PF and DE components, respectively; 
)( fp  

and 
)( ed is the EoS parameter of PF and DE with 0)( fp ; 

)( ed

x , 
)( ed

y and 
)( ed

z are the deviation-

free EoS parameter of the DE on the x , y and z  axes, respectively. and are the deviations from the 

deviation-free EoS parameters of the DE, respectively, on the x , y and z  axes. Here  and  are not 

necessarily constants and can be function of the cosmic time t .  

Einstein’s field equations (2) for metric (1) with the help of equations (3) and (4) can be written as  
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Where over dot (

) denotes the differentiation with respect to t . 

The Bianchi identity is given by 

 0;;;  ji

j

edji

j

fpji

j TTG .                           (8) 
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These yields: 
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Solution of the Field Equations 

The directional Hubble parameters in the direction of x , y , z  for the Bianchi type-IX metric (1) are  

defined as 
a

a
H x


 and

b

b
HH zy


 .                 (10) 

The mean Hubble parameter is given by 
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Where 
2abV  is the spatial volume of the universe. 

The anisotropy parameter of the expansion is defined as 

 









 


3

1

2

3

1

i

i

H

HH
,               (12) 

Where )3,2,1( iH i represents the directional Hubble parameters in the direction of x , y and z  axes, 

respectively. 

We have three linearly independent equations (5), (6) and (7) with eight unknowns

  ,,,,,,, )()()()( edfpedfpba . We need five extra conditions to solve field equations 

completely. Following Akarsu and Kilinc (2010), we assume that the PF and DE component interacts 

minimally. Therefore, the energy momentum tensors of these two sources are conserved separately, i.e. 
the Bianchi identity (8) has been split into two separately additive conserved components. 

Hence, the conservation of energy momentum tensor of the DE gives 
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And the conservation of the energy momentum tensor of the PF component gives 
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One can split up the above conservation of the energy momentum tensor (13) of the DE into two parts: 
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where
ji

j

ed

; is the last term of the 
ji

j

ed T;  in equation (13) and arise due to the deviation from 
)( ed  and is 

the deviation-free parts of the 
ji

j

ed T;
 in equation (13). 

Now, we shall make the following strong assumption: 
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which also results in the deviation-free part of the 
ji

j

ed T;  to be null i.e. 
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The dynamics of the deviation parameters )(t  and )(t  is assumed to be 
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where n  is a dimensionless constant. 

Also, we assume the EoS parameter of the PF to be constant, i.e. 

)(

)(
)(

fp

fp
fp p


   .                            (20) 

Lastly, for the constant deceleration parameter, we impose a law of variation for the Hubble parameter. 

According to this law, the mean Hubble parameter for Bianchi type-IX metric is given by 

32 )(
m

abkH


 ,                           (21) 

where 0k  and 0m  are constants. 

The spatial volume is given by 
23 abAV                               (22) 

where A  is the mean scale factor. 

The mean Hubble parameter H for Bianchi type-IX metric is given by  
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The directional Hubble parameters in the direction of x , y and z  axes, respectively, are given as 

a

a
H x




 

and 
b

b
HH zy


 .                           (24) 

The volumetric deceleration parameter is 

2A

AA
q




 .                          (25) 

On integrating, after equating (21) and (23), we get 
ktecab 3

1

2  ,  for 0m                        (26) 

and 

mcmktab
3

2

2 )(  , for 0m                        (27) 

where 1c and 2c are positive constants of integration. 

Using (21) and (26) for 0m , and with (27) for 0m , the mean Hubble parameters are 

kH  ,  for 0m                       (28) 

And  
1

2 )(  cmktkH , for 0m                        (29) 

Using equations (23), (26) and (27) in (25) we get constant values for the deceleration parameter for the 

mean scale factor as 

1 mq ,  for 0m                           (30) 

1q ,  for 0m                           (31) 

Using (18) and (19), and the mean Hubble parameter (20) in the subtraction of (6) from (7), we get  
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On integrating (32) and then considering (28) and (29), we get 
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Where is the real constant of integration. 

 

Model for m = 0 (q = -1):  

On integrating (33) and using (26) we get, 
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where cK is a positive constant of integration. 

The directional Hubble parameters on the x , y , and z are respectively, given by   
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The spatial volume is given by 
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By using (37), (38) and (28) in (12), we get 
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The expansion scalar   is found to be 
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The shear scalar
2 , defined by 

22

2

3

2

1
Hji

ji   , is found as 
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Using (35) and (36) in (14), the energy density of the PF is found as 
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The energy density of DE is found by using the scale factors and energy density of the PF (43) in equation 

(5) as 
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Now using (35), (36) and (44) in equation (17), the deviation-free part of the anisotropic EoS parameter 

may be obtained as 
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The deviation parameters and  can be obtained by using equations (35), (36) and (44) in equations (18) 

and (19) as 
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Physical Behavior of the Model 

In this model, 10  qdtdH . This shows that the rate of expansion of the universe is faster. 

Thus, this model may represent the inflationary era in the early universe and very late times of the 

universe. 

The spatial volume is finite at 0t . It expands exponentially as t  increases and becomes infinitely large 

as t . The directional Hubble parameters are finite at 0t and t . They deviate from the mean 

Hubble parameter due to  . While  is supporting (opposing) the expansion on the xaxis, it opposes 

(supports) the expansion on the y&z-axes. The expansion scalar kH 33  , is constant throughout the 

evolution of the universe. 

The energy density of the PF 
)( fp decreases exponentially and converges to zero since 0)( fp . The 

energy density of the DE component changes slightly at early times and converges to a non-zero value as 

t  increases. Thus, the ratio )( )()()( edfped   converges to 1 as t  increases, i.e. the DE dominates 

the PF in the inflationary era. The EoS parameter of the DE 
)( ed  begins in phantom region 1)( ed  

and tends to -1 by exhibiting various patterns as t  increases. As t  increases, the anisotropy of the 

expansion ( ) decreases exponentially to null. Thus the space approaches to isotropy in this model. The 

deviation parameter 0  throughout and   is finite at 0t .  

Here the model isotropized for large values of t , provided that 0n , otherwise, it is anisotropic. Also, 

the anisotropy of the DE isotropizes for large values of t . 
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Model for m ≠ 0 (q ≠ -1) 

The solutions in this section are valid for all possible values of m except for 3m and 0m . 

From (27) one can see that the initial time of the universe is 
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c
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 for 0m . For brevity of the 

equation, we may redefine the cosmic time as 

2cmktt  ,                             (48)  

and by doing that the initial time of the universe has also been set to 0t . 

Thus, we may rewrite the metric (1) as 
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Using (34), we can obtain the ratio of scale factors 
b

a
 and then using (27), we obtain the exact expression 

for the scale factors as  
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where cK is a positive constant of integration. 

The spatial volume of the universe is given by 
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The directional Hubble parameters on the x , y , and z are respectively, given by   
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By using (29), (53) and (54) in (12), we get 
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The expansion scalar   is found to be 
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The shear scalar 
2 , defined by 
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Using (50) and (51) in (14), the energy density of the PF is found as 
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The energy density of DE is found by using the scale factors and energy density of the PF (58) in equation 
(5) as 
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Now using (50), (51) and (59) in equation (17), the deviation-free part of the anisotropic EoS parameter 

may be obtained as 

)()(
3

1
)(

3

1
)(

2

1
1)(3

)(
9

8
)(

)3(3

)38(
)(

)(
9

2
)(

)3(3

)32(
)()(

)3(3

2

)(
3

1
)(

)3(

)96)(32(
)()(

)(
)(

21

22

3
1

2
2

2

3
1

2
2

1

3
1

6

22

2

222
)()(

)(

ttLtLttk

t
k

t
m

nmk
tL

t
k

t
m

nmk
tLt

m

mnk

tt
m

mnmmk
tt

t
fp

m

mm

mfpfp

ed


















































































































 .          (60)  

The deviation parameters  and  can be obtained by using equations (50), (51) and (59) in equations 

(18) and (19) as 
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Physical Behavior of the Model 

The mean Hubble parameter H  is infinitely large at 0t  and null at t . For 10  m  or 0q  

indicates that the universe is accelerating. For 1m , the universe is decelerating. In particular, for 1m  

we get 0q  indicating that the universe is expanding with constant velocity. The volume of the universe 

expands indefinitely for all values of m . The anisotropy of the expansion ( )(t ) diverges as 0t , 

converges to constant as t for 3m  and vice versa for 3m . Here one can observe that )(t ,
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)(1 tL  , )(2 tL  ,   and 
)( fp  lowers the value of the energy density of DE 

)( ed . Also, one can set the 

value of 
)( ed  as desired by choosing the appropriate values of the parameter. 

 

CONCLUSION 

In the present paper, the Bianchi Type-IX cosmological models with PF and anisotropic DE have been 

studied. Here two models with exponential expansion and power law expansion have been studied. In 

both the models, the anisotropic DE isotropizes for large value of t . The anisotropy of the space 

isotropizes for exponential expansion. Also the anisotropy of the space isotropizes the power law 

expansion model provided 31m . Also in case of exponential expansion model after certain time 

evolves towards  CDM cosmological model for different values of m. Most of the observations are 

similar to that of Akarsu and Kilinc (2010). The model for 1m , i.e. 2q , is not discussed as it is a 

decelerating model which is not consistent with the present-day observations. 

In summary, two cosmological models which lead to a cosmological scenario in accordance with recent 
features of modern cosmology as an initial phase with decelerating expansion followed by an accelerating 

one at late time has been obtained. This is most relevant and significant to astrophysics. However, 

detailed studies are still needed to discuss concrete possible applications (if any) of the models presented 
in this paper which will make their phenomenological relevance clearer. 
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