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ABSTRACT 

This paper deals with the study of mechanics of plate in some different way without altering the 

fundamental plate hypotheses and it is shown that our formulation agrees with Kirchoff-Love plate theory 
in classical domain. 
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INTRODUCTION 

In classical continuum, modeling an object as a continuum assumes that the substance of object 

completely fills the space it occupies. So the model in this way ignores the fact that matter is made of 
atom and is not continuous. 

In this model, plate theories are descriptions of the mechanics of flat plates that draws from theory of 

beam. Plates are defined as a structural element with a small thickness compared to the planar dimension. 

In plate theory we take the advantage of this disparity in length scale to reduce the three dimensional 
problem to two-dimensional problem. The aim of the plate theory is to calculate stress, deformation, and 

to study on the vibration of plate under external stimuli. There are two well-accepted plate theories which 

are:                                                                                                                                                                                    

Kirchoff-Love Plate Theory  

This is an extension to Euler-Bernoulli beam theory and was developed by Love (1982). Main hypothesis 

of this theory is given in Reddy (1997) are as follows: 
i.   Plane normal to the mid-surface remains plane and normal to it after deformation. 

ii. Thickness of the plate does not change during a deformation. 

Mindlin-Reissner Theory 

This model was considered by Reissner (1944), Wang et al., (2001) where we should note that the plane 
section is remained plane but no longer perpendicular to the centroidal plane due to linear contribution of 

shear effect along thickness of the plate for its deformation which was ignored in previous theory.  As 

earlier it is assumed that the thickness does not change during deformation. This implies that normal 
stress through the thickness is ignored. This assumption is called plane-stress condition.  

Classical plate theory really develops after the pioneering work of Kirchoff. After that thousands of 

publications are presented which try to give the foundations and methods of deduction of Kirchoff-Love 

theory and its possible improvements; books of Ciarlet (1997, 2000) can be mentioned in this context. 
This two dimensional linear model which are in fact, the two-dimensional approximation of three 

dimensional theories of elastic plate involves a priori assumptions regarding the variations of unknowns 

(i.e. displacements and the stresses) across the thickness of the plates. The assumptions on which the 
theory of small deflection of thin elastic plate is based can be found in the book of Timoshenko and 

Woinowsky-Krieger (1985). Another method which has been used to obtain two dimensional models of 

thin elastic plates is the so-called asymptotic expansion method. In this method, a formal power series 
expansion of three-dimensional solution is used by considering the thickness of the plate as the small 

parameter and the Kirchoff model of linear elastic isotropic plates is obtained as the leading term of 

formal asymptotic expansion.  
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Levinson (1980, 1981) used vector-approach to formulate the equations of equilibrium of isotropic beam 
and plates. Reddy(1984) independently developed third-order laminate plate theory and derived equations 

of motion by making special assumption on displacement field  using principle of virtual displacement. 

Bickford (1982) and Heyliger and Reddy (1988) also derived a third-order beam theory which is 
variationally consistent.  Books of Reddy (1984, 1999) can be consulted to get an overview on this 

subject and for more references. Wang (1995), Wang et al. (2000), Wang and Kitipornchai (1999) are 

other significant works that are related to classical thin plate.   

In this paper we have attempted to formulate a vibration problem of classical plate in some different 
fashion. We include terms which were ignored in most of the previous work we have seen, though 

incorporation of such terms do not violate the basic plate hypothesis which was made in previous works. 

Classical Theory of Linear Elasticity  

In case of small deformation theory of linear elasticity strain-measures are given by strain tensor ij   can 

be written as 

)(
2

1
,, ijjiij uu    ,where  3,2,1,, kji  .                                                                                           (1)       

Here comma denotes the differentiation with respect to rectangular co-ordinate  𝑥𝑖  . Also summation 

convention holds for the repeated indices . 

In classical theory the balance of linear momentum and angular momentum are in the following form: 

0)(,  iijij uft   , 0jkijk t                                                                                                           (2) 

where   is the density, if  is the body-force density in i -direction. In the linear theory of elasticity, the 

equations of motion (2) are supplemented by the following constitutive equation 

ijijkkij Gt  2                                                                                                                      (3) 

where G, correspond to Lame’ constants. 

Theoretical Assumptions of Plate Theory          

Consider a thin plate of thickness h2 . 3x  -axis is taken along the thickness of the plate 1x , 2x -axes lie on 

the planar dimension of the plate to constitute a right-handed rectangular co-ordinate system in space  

having  03 x as its median plane. Let C  denote the boundary curve of the median plane of plate S .  

We introduce a new length scale by taking h  as unit-length. Now with that new scaling, we make the 

following assumptions:  the displacement vector u


 and the stress tensor ijt  can be expressed in terms of a 

series in Legendre polynomial )( 3xPn  , so that we can write     
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where 
)()( , n

kl

n tu


 are independent of 3x .                                   

Here we consider  11 3  x  , )( 3xPn is Legendre polynomial and }:)({ 3 nxPn forms a complete 

orthogonal set in 11 3  x  with respect to the inner product, which is  defined by             

dxfggf 




1

1

 , provided gf ,  are 
2L -measurable function in [-1,1]. We know 

2L  is a norm-linear 

space with norm, which is denoted by  .   and is defined by  fff ,
2

. 

We take   ).12/(2
2

 nPI nn                                     
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There is a well-known result of analysis that for any function f in 
2L -measurable space in [-1,1], we can 

have a series  


0n

nn Pc  , where nnn IPfc /,    , which  converges  to f  in 
2L  sense. So if we assume 

that displacement field is 
2L - function or continuous function, along its thickness, i.e. in, 11 3  x  

then equation (4) is admissible as per our assumption. 

In plate theory, it is assumed that 033 t . As usual, we assume that thickness of the plate remains 

unchanged due to deformation, which gives a further restriction on the assumption of 3u , will be 

discussed in the next section. 

At first, we make no presumption on N, later we discuss the plate-problem for N=2. 

Mathematical Formulation of Plate Theory 

We mainly concern about the vibration of plate. We consider the plate surfaces, 13 x are free of 

traction, so that flexural motion appears due to the initial stimuli and body-force density  0if .     

Now we decompose equation (2) into components along the orthogonal co-ordinate function

nxPn :)( 3   of the Hilbert-space
2L  in [-1,1], which gives  

.0)( 3,  xPut nlkkl
   

The above equation can be written as                     
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133
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where }.3,2,1{,};2,1{  lkK
 

Using the condition that the boundary surface 13 x is free of traction i.e. 0)1,,( 213 xxt l   and 

employing properties of Legendre polynomial we finally get the following equations: 

0)0(

,  lKKl ut                                                                                                                                     (5.a)        

or, 
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,where ./)()(

n

n

ij

n

ij Itt   

 where  l runs over {1,2,3} and K  runs over {1,2}. So through equations  (5.a),(5.b) we make the  3D  

problem into 2D problem in which thickness co-ordinate 𝑥3  is  eliminated. 

Taking into consideration )()1()( xPxP n

n

n   , we note that, }2,1{;)( Ku n

K   the component of 

displacement field Ku  along the co-ordinate function ]1,1[:)( 33 xxPn  
represents extensional motion 

or flexural motion if n  is even or odd respectively and 
)(

3

nu  represents flexural  motion .n                                                               

From the hypothesis   033 t , we get }.2,1{,)2/(33  KG KK  We use this to establish 

constitutive relations from (3), which are as following: 
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MLK ,,  runs over {1, 2} and  p ,      GGGGE   2/,/23 . 
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The equations of motion are divided into two parts in which one set of equations are written for 
extensional motion and the other set of equations for flexural  motion. It is shown with the presumptions 

and plate hypothesis that the two sets are uncoupled for N=1. However, for N>1, such un-coupling is not 

obvious and as a result one cannot distinguish the field equations in such way. 
One of our plate-hypotheses is that, the thickness of the plate remains unchanged due to vibration. This 

gives that 0][

1

1

1

1333,3 3




xudxu , that means 0)(

3 nu  if n   is odd.  

Substituting relation (6.a), (6.b) into relation (5.a), (5.b)  we obtain the following field equation : 
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 where }2,1{,, MLK  and .p  

A set of boundary and initial conditions can be derived by the decomposition along   nxPn ),( 3   in              

[ -1, 1].  

A set of boundary conditions are  
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where .CCL   

Initial conditions of this problem are 
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  Here the quantities on the right-hand-side  is prescribed on the boundary C  or on the surface .S  

Case study for N=2: 

Field equation for N=2 is obtained from (7.a)-(7.d), by setting  .2;0)(  nu n

k  Now we decompose 

displacement and micro-rotation in a way, which is known as Helmholtz decomposition in 3D.  

Let  ;)0,,( )()()(

2
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nnnn Vuu


   where ),0,0( )()( nn VV 
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                                                      (9)                                                                                        

where 
)()( , nn V  are all function of txx ,, 21  ; }2,1,0{n .       

Now substituting (9) into the field equations for N=2 and separating the curl and gradient part of the 

equations we get the equations as following: 
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International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online)  

An Online International Journal Available at http://www.cibtech.org/jpms.htm  
2013 Vol. 3 (2) April-June, pp.115-121/Bhattacharyya and Mukhopadhyay 

Research Article 

119 
 

0
4

)]1/([ )2(

2

)2(

1

)2(22

2   IG
I

EI                                                                              (10.c) 

0
4 )2(

2

)2(

1

)2(2

2  VIGV
I

VGI                                                                                               (10.d) 

0)]1/([ )0()0(22   E                                                                                                        (10.e) 

  00)0()2(  VVG                                                                                                                        (10.f)  

0)0(

3

)1(2)0(

3

2  uGuG                                                                                                         (10.g)  

0)2(

3

)2(

3

2  uuG                                                                                                                          (10.h) 

With the help of (9) we get the following relation :  
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where  }2,1{,, MLK  and  2,1,0n . With the help of above relations, the boundary and initial 

conditions (8.a)-(8.h) can be expressed  in terms of 
)()( , nn V  and thus they can be made in  suitable form 

to represent the boundary conditions and initial conditions  for (10.a)-(10.h).       

Passage to the classical plate-theory 

From equations (10.a) and (10.g) if we eliminate  𝑣 1  , we get 
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 Now equations are derived by introduction of new length-scale by taking ℎ  as unit length, which is 

mentioned earlier . 

Now we want to consider the effect of thickness ℎ  of the plate in the dynamics of plate. So we now go 

back to original length-scale so that we have 

 hxx ii /   , ix  is the co-ordinate in original scale, where  .3,2,1i  

)./()/( ii xhx      
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In dimension of  )1/( 2

1 EI , length-dimension appears through   
`1][ Length .  

Thus we have ,11 DhD  where 1D  is the quantity  )1/( 2

1 EI , measured in original length-scale. 

Similarly, we have  3h ,  nh nnn ; .                              

 Now if we set G   i.e. we ignore shear deformation in (11), we get 
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If we re-write the above equation in original length-scale, it takes the form        
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Now cancelling 
2h  and omitting bar-notation in (11), we get the form of equation in original length-scale 

as following 
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Other plate-equations of (10.a)-(10.h) in original length-scale takes the form 



International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online)  

An Online International Journal Available at http://www.cibtech.org/jpms.htm  
2013 Vol. 3 (2) April-June, pp.115-121/Bhattacharyya and Mukhopadhyay 

Research Article 

120 
 

022 )1(1

3
)0(

3

)1()1(2
3

1  


 
G

Ih
huh

G

hD
                                                                          (12.b)    

02 )1(
3

1)1()1(23

1  V
G

hI
hVVhI 

                                                                                          (12.c)                                         

0
4

.
)1(

)2(2

3
)2(

1

)2(2

2

2

3















G

Ih
h

IG

EIh
                                                                           (12.d) 

 0
4 )2(

2

3)2(

1

)2(2

2

3  VIhhV
I

VIh                                                                                        (12.e) 

0
)1(

)0()0(2

2








E
                                                                                                           (12.f) 

0)0()0(2  V
G

V 
                                                                                                                       (12.g) 

 0)2(

3

)2(

3

2  u
G

u 


                                                                                                                       (12.h)                  

Now if we neglect shear-deformation and rotatory inertia, i.e. ,G 03 h  , such that DGh ,3
  are  

finite and  set 
 
 of equations (12.a)-(12.h) reduce to the  following equations : 
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which agrees with the plate equation according to classical theory. 

If we consider a load hP 2/  along the direction of 3x -axis and replace
)0(

3u  in (13.a) by hPu 2/)0(

3   

then we obtain  [By the application of D’Alambert’s method (incorporation of pseudo-force in 

constructing equation of dynamics)] the following plate equation: 
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4  PuhuD   which is well-known plate equation in classical theory [Kirchoff-Love 

theory] in the case of negligible rotatory inertia and shear-deformation. 

From (13.c) we get 0)1( V  , which implies
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Expression of 21 ,uu   agrees with the consideration of the expression for 21 ,uu   in Kirchoff-Love Plate 

theory.   

 

Conclusion 
So in this article we have looked into the plate problem in a new fashion by incorporating more terms that 

were ignored in earlier theories. We re-defined the plate problem in a new approach and it has been 

shown that the equations derived in this paper agrees with that of  Kirchoff-Love plate theory. So that our 

formulation can be taken as an extension to Kirchoff-Love  plate theory and it is done in some different 
fashion.  
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