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ABSTRACT 

The ground state properties of trapped atomic Boson-Fermion mixture at near absolute zero temperature 
Kelvin is studied using second quantization techniques. An effective Hamiltonian for the Binary system is 

developed in terms of the magnitude of fluctuations to bring out the interplay between boson-boson, 

boson-fermion & fermion-fermion interactions and their implications on the thermodynamics properties 

of the system. The study focused on a Grand Canonical Binary system of 
3
He-

4
He isotopes whose 

thermodynamic properties have been determined by distinctively singling out the boson-boson, boson-

fermion, and fermion-fermion interactions from which the energy density is established algebraically. The 

specific heat and the entropy of the system were consequently established and analyzed. The total energy 
of the system is found to increase with increase in occupation number of the system. The jump in the 

specific heat seems to suggest a phase-like transition at temperature of about 0.4K. Entropy decreases 

with temperatures.  
 

Key Words: Bose-Einstein Condensation, Binary Condensates, Grand Canonical Ensemble. 

 

INTRODUCTION 
Since the first realizations of Bose-Einstein Condensation (BEC) in trapped dilute atomic gases (Inguscio 

et al., 1998), this lively field of research has generated impressive experimental results illuminating basic 

quantum phenomena. Besides the studies using bosonic atoms first, results were obtained on the cooling 
of fermionic atoms to a low temperature regime where quantum effects dominate the properties of the gas 

(Demarco and Jin 1999). One of the exciting prospects is the observation of Bardeen, Cooper and 

Schrieffer (BCS) transition of the degenerate Fermi gases to superfluid state. Binary condensates that 

were first realized in 1995 for Rubidium (Anderson et al., 1995) Sodium (Bradley et al., 1995) and 
Lithium (Davis et al., 1995) provide unique opportunities for exploring quantum phenomena on a 

macroscopic scale. These systems differ from ordinary gases, liquids and solids in terms of the particle 

density which is low and the temperature must be of order 10
-5 

Kelvin or less to observe quantum 
phenomena. 

The BEC in the alkali gases were only possible due to trapping and cooling techniques, which can be 

created in an almost pure form. BEC’s have been realized with all alkali gases, except francium, and with 
hydrogen and chromium (Griesmaier et al., 2005) as well. 

From other works on the trapped binary bose-fermion system, the theoretical description of the system   

has been developed in the mean-field approximation to determine the boson and fermion density profiles 

at zero temperature (Mølmer et al., 1998, Amoruso et al., 1998, Miyakawa et al., 2000) and the related 
properties of stability against phase separation and collapse, numerically( Nygaard and Molmer, 1999), 

(Roth and  Feldmeier, 2002) and (Akdeniz et al., 2002) and by a Gaussian Variation Ansatz (Yi and Sun 

2001). Other works performed on the strongly interacting mixture of 
4
He - 

3
He was on the calculation of 

the structural factors (Al-Hayek and Tanatar, 1999; Mazzanti et al., 2000). The works on alkali earth 

metal atoms was done with help of mean field approximation while variation approaches were used for 
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strongly –interacting helium. Other authors used methods such as exact solution using Bethe Ansatz 

(Imambekov and Demler, 2006) bosonization techniques (Mathey et al., 2007) quantum Monte Carlo 

(Pollet et al.,2006) and T-matrix approximation (Barillier et al., 2007, Sakwa and Khanna, 2000). 
Recently new mixtures have been realized in the lab including 

6
Li-

87/85
Rb (Deh et al., 2010) and 

40
K-

41
K 

(Zeng-Qiang Yu et al., 2011) using mean field treatment of a two channel model (Powell et al., 2008). 

Some recent works studied boson-fermion pairing effects within a single channel model for broad 
resonance (Song et al., 2010). 

Statistical thermodynamics explains the thermodynamic behavior of macroscopic systems as derived from 

microscopic properties of the constituents. (Ayodo 2008, Ayodo et al., 2010), used the statistical 

approach to study the thermodynamic properties of 
7
Li-

6
Li and potassium mixtures. The effects of particle 

interactions on the stability of the bose-fermi mixtures were studied and found that for Lithium bose-

fermi system, there is a discontinuity at the centre of the trapping potential and for pottassim bose-fermi 

system there was a critical condensate radius of 6 oscillator units with the system moving spontaneously 
from negative attractive regime to positive attractive regimes. 

Quantum thermodynamic perturbative theory for many body system in which the particles interact via a 

pair potential containing short ranged and very large repulsive part was developed by (Khanna et al., 
2011). Particles at low densities were studied and their effects on the 

4
He. The particle densities decrease 

with increase in hardsphere diameters for a fixed saturation density. 

A lot of studies that have been done on boson-fermion mixtures using many different approaches to find 

particle interactions (Molmer et al., 1998, Amoruso et al., 1998, Miyawaka et al., 2000), stability, 
collapse against mean field numerically (Nygaard and Molmer, 1999), (Roth and  Feldmeier 2002) and 

(Akdeniz et al., 2002 and Yi and Sun 2001), structural factors (Al-Hayek and Tanatar, 1999; Mazzanti et 

al., 2000)and the thermodynamic properties  of these systems  by (Ayodo et al., 2010). The main focus 
has been statistical mechanics and related approaches that were used in determining these properties of 

the boson-fermion system. Second quantization techniques so far have not been embraced as a method in 

the study of binary boson-fermion systems in the vicinity of zero Kelvin temperature. Particle   

interactions between boson-boson, boson-fermion and fermion-fermion and have not been studied using 
2

nd
 quantization techniques.  

This study enhances the understanding of the ground state properties of binary mixtures in the vicinity of 

absolute zero temperatures using second quantization techniques taking into consideration the many body 
interactions. We have investigated the ground state properties of trapped atomic Boson-Fermion mixture 

using the effective Hamiltonian for Bose-fermion (Roth and Feldmeier, 2002) and further   investigate the 

interplay between boson-boson, boson-fermion and fermion-fermion interactions and their implications 
on the energy and transition properties of the grand canonical binary mixture   using second quantization 

formalism. The total energy of the grand canonical binary system of 
3
He-

4
He was determined and 

thereafter the transition properties of the system determined respectively.  

2. Theoretical Formulation 

2.1. Introduction  

To describe the properties of the binary boson-fermion mixture at zero temperature, the energy functional 

in mean-field approximation is constructed. The atoms can be considered as inert interacting particles, i.e. 

internal excitations of the atoms are not relevant.The many-body state 𝜓 describing the system is the 

product of a bosonic Nb-body state |𝜓𝑏 >and a fermionic 𝑁𝑓 -body state| 𝜓𝑓 > . Thus   

𝜓 = |𝜓𝑏 > | 𝜓𝑓 >                                             (1) 

Where  

|𝜓𝑏 >= |𝜓1 > |𝜓2 > ⋯ |𝜓𝑛𝑏 > =  |𝜓𝑏𝑖
𝑁𝑏
𝑖=1                                                     (2) 

Equation (2) is the product of Nb identical single particle states |𝜓𝑏𝑖 > which is symmetric for bosons. 
The fermionic state is a Slater determinant i.e. an anti-symmetrized product of different single particle 

state given as 
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|𝜓𝑓 > =   𝐴  |𝜓𝑓𝑖 >
𝑁𝑓

𝑖=1
                                           (3) 

 where A is the anti-symmetrization operator. 

In this scenario pair interaction is weak hence the mean field approximation is a good projection. The two 
body potential has an attractive part at a larger particle distance and strong repulsion at short distances. 

A full atom-atom potential is replaced by a suitable effective interaction potential with relevant physical 

properties of the original potential (Roth and   Feldmeier, 2001). Due to the large inter-atomic distance 
the atom-atom interaction can in general be described by an effective contact interaction for all partial 

waves (Roth and   Feldmeier 2001,2002), using the effective contact  interaction one can set up the 

Hamiltonian of binary boson-fermion mixture. It consists of the bosonic component (B), the fermionic 

component (F) and a part which represents the interaction between the two species (BF). The Hamiltonian 
of the interacting mixture reads: 

𝐻 = 𝐻𝑏𝑏 + 𝐻𝑓𝑓 + 𝐻𝑏𝑓                                                                                                      (4) 

The s-wave interaction between two bosons is described by the first term of Eq. (4); since we consider a 

pure Bose-Einstein condensate at zero temperature only the s-wave term is needed. Higher even partial 

waves are negligible. For the interaction between a bosonic and a fermionic atom s- and p-wave terms 
contribute. The operator of the s-wave boson-fermion contact interaction forms the last term of the 

Hamiltonian (2). Since the s-wave interaction dominates in many cases of interest, we will neglect the p-

wave interaction for this discussion. For identical fermions s-wave contact interactions are prohibited by 

the Pauli principle. However, p-wave interactions can have significant influence on the structure and 
stability of the fermionic components (Roth and   Feldmeier 2001, 2002). 

The effective Hamiltonian as drawn from equation (4) can now be used to study the ground state 

properties of boson-fermion mixture at near zero temperature. The expectation value of the Hamiltonian 
eq. (4) calculated with the many-body state defines the total energy of the mixture as 

 

𝐸𝑇 =< 𝜓|𝐻|𝜓 >=< 𝜓𝑏 |𝐻𝑏𝑏 |𝜓𝑏 > +< 𝜓𝑓 |𝐻𝑓𝑓 |𝜓𝑓 > +< 𝜓𝑏𝑓 |𝐻𝑏𝑓 |𝜓𝑏𝑓 > 

 

𝐸𝑇 = 𝐸𝑏𝑏 + 𝐸𝑓𝑓 + 𝐸𝑏𝑓                                                                                                                               (5) 

where 𝜓 is defined in equation (1). Equation (5) is the total energy of the binary mixture. 

The total energy 𝐸𝑇 is decomposed into a purely bosonic part (B), a fermionic part (F) and the interaction 

part between the two species (BF). In order to keep the discussion simple we restrict ourselves to 
symmetric systems with equal numbers of bosons and fermions 

𝑁𝑏 = 𝑁𝑓 .   

2.2. Dilute Boson-Fermion Mixtures 
In the theory of a trapped Bose-Fermi mixture, the dilute mixture is treated as thermodynamic equilibrium 

system under the grant canonical ensemble whose thermodynamic variables 𝑁𝐵 and 𝑁𝐹  are respectively 

the total number of trapped bosonic and fermionic atoms, T is the absolute temperature, and 𝜇𝐵  and  𝜇𝐹  
the chemical potentials  for boson and fermion respectively. The density Hamiltonian of the system is 

given by equation (4). The distribution numbers must satisfy the following relations 

         

 

Ν = Ν𝑓 + Ν𝑏  =  𝑛𝑓𝑗 +∞
𝑗=1  𝑛𝑏𝑗

∞
𝑗=1                                                                               (6) 

 

 

𝐸 = 𝐸𝑏 + 𝐸𝑓 =  𝑛𝑏𝑗

∞

𝑗 =1

𝜖𝑗 +  𝑛𝑓𝑗

∞

𝑗 =1

𝜖𝑗  

 

where 𝐸𝑓  and 𝐸𝑏  are the total internal energies of fermions and bosons in the mixture. 
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2.2.1. Boson Interaction 
The energy levels of anharmonic oscillator in one dimension are determined. The harmonic oscillator of 

unperturbed Hamiltonian in one dimension is written as,  

 𝐻 =
𝑃2

2𝑚
+

1

2
𝑘𝑥2                                                      (7) 

  where 
2mk  , P is the momentum, m  is the mass of bosons, 𝑥 is the displacement vector and 𝜔 is 

the angular velocity of the oscillator. 

The following perturbation equation is added to the harmonic oscillator (Khanna et al., 2010) 

𝑉𝑏𝑏 = 𝛽𝑥3 + 𝛾𝑥4                                                                                           (8) 

Where   
and   are constants of perturbation, x is displacement vector.

 
The perturbed Hamiltonian for bosons Hbb becomes, 

𝐻𝑏𝑏 = 𝐻𝑜𝑏𝑏 + 𝑉𝑏𝑏                                           (9) 

where 𝐻𝑜𝑏𝑏 =  unperturbed Hamiltonian  and Vbb = perturbation potential that causes anharmonicity in 

the harmonic interaction as given by equation (8). Hence   

𝐻𝑏𝑏 =
𝑃2

2𝑚𝑏𝑏
+

1

2
𝑘𝑥𝑏𝑏

2 +  𝛽𝑥3 + 𝛾𝑥4                                                                                                        (10) 

The displacement vector 𝑥 can be defined in terms of creation 𝑎+ and annihilation 𝑎 operators, obeying 

the commutation relations, such that   

𝑥 =  
ℏ

2𝑚𝜔
 

1

2  𝑎 + 𝑎+                                                       (11) 

     

𝑃 = 𝑖  
𝑚𝜔 ℏ

2
 

1

2  𝑎 − 𝑎+                                                      (12) 

Using equation (11) and (2) in equation (7) gives  

 

𝐻𝑜𝑏𝑏 =  
ℏ𝜔

2
 2𝑛 + 1   

Hence, the unperturbed Hamiltonian for the system may be written as  

𝐻𝑜𝑏𝑏 =  ℏ𝜔  𝑎𝑘
+𝑎𝑘 +

1

2
    𝑘                                        (13) 

 For N identical non-relativistic particles 

|𝜓 > = |𝜓 𝑥1𝑥2 … … 𝑥𝑁 >                                                                                                                     (14) 

and the perturbation potential  given by equation (8) can be written  in terms of operators as 

𝑉𝑏𝑏 = 𝛽  
ℏ

2𝑚𝑏𝑏 𝜔
 

3

2  𝑎 + 𝑎+ 3 + 𝛾  
ℏ

2𝑚𝑏𝑏 𝜔
 

2
 𝑎 + 𝑎+ 4                                                  (15) 

 

The resultant    𝐻𝑏𝑏  is 

𝐻𝑏𝑏 =  ℏ𝜔  𝑎𝑖
+𝑎 +

1

2
 

𝐴

𝑖=1

+   𝛽  
ℏ

2𝑚𝑏𝑏 𝜔𝑖
 

3
2
 𝑎𝑖𝑏 + 𝑎𝑖𝑏

+  3 + 𝛾  
ℏ

2𝑚𝑏𝑏 𝜔𝑖
 

2

 𝑎𝑖𝑏 + 𝑎𝑖𝑏
+  4 

𝑛

𝑖=1

 

                                                                                                                                                                  (16)                                                               

The equation can be expanded in terms of   𝑎𝑎+ and then replaced by the equivalent of n such that: 

𝐻𝑏𝑏 =  ℏ𝜔  𝑎𝑖
+𝑎 +

1

2
 

𝐴

𝑖=1

+   𝛽2  
ℏ

2𝑚𝑏𝑏 𝜔𝑖
 

3

18𝑛3 + 𝛾  
ℏ

2𝑚𝑏𝑏 𝜔𝑖
 

2

 6𝑛2 + 6𝑛 + 3  

𝑛

𝑖=1

 

                                                 (17) 

 

The first summation is the zero energy of the system; second summation is the perturbation potential due 

to interaction of boson pairing. It’s this term that   causes the anharmonicity in a system of bosons. 
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2.2.2. Fermion Interaction 

The general expression for the Hamiltonian of a system of free particles is given as 

                                                                      

𝐻 =  ℇ𝑖𝑛𝑖𝑖 =  ℰ𝑖𝑖 𝑎𝑖
+𝑎𝑖                                      (18) 

The number of particles in ni is constant and the total number of particles No in the system is conserved. 
Note that Fermions obey the anti- commutation laws. For an interacting system of fermions; the 

Hamiltonian 𝐻𝑓𝑓   conserves the total number of particles. The fockspace picture of the many- body 

problem is equivalent to the grand canonical ensemble of statistical mechanics. Thus instead of fixing the 

number of particles, langrage multiplier λ is introduced to weigh contributions from different parts of the 

fockspace. Thus the Hamiltonian operator is defined as 

                                                                    

𝐻𝑓𝑓 =  𝜀𝑖 𝑛𝑖 −  𝜆𝑛𝑖 =   𝜀𝑖 − 𝜆 𝑛𝑖                                                  (19) 

 
In Hilbert space with fixed number of particles this amounts to a shift of the energy by λn. The system is 

now allowed to choose the sector of the fockspace but with requirement that the average number of 

particles < 𝑛 > is fixed to some number 

 no. In this thermodynamic limit as  𝑛 → ∞ ; λ  the chemical potential of fermions represents the 

difference of the ground state energies between two sectors with n+1 and n particles .The value of  will 

be fixed by the requirement, 

< 𝑛 > = 𝑛𝑜                                                      (20) 

The choice of  determines only the average value of no in the  -system. The fluctuation of no in this 

system however is very small for large n. 
Using equation (18) in equation (19), the perturbed Hamiltonian for a system of fermions in terms of 

operators is obtained as 

𝐻𝑓𝑓 =  ℏ𝜔𝑎𝑖
+𝑎𝑖

𝐴
𝑖=1 − 𝜆 𝑎𝑖

+𝑎𝑖                                        (21) 

2.2.3 Bosons-Fermions  

A hybrid system of boson-fermion is anharmonic. The anharmonic system in one dimension may be 

expressed as (Samiha 2000) 
 

𝐻𝑏𝑓 = 𝐻𝑜 + 𝜆𝑥4                                         (22) 

where  is the perturbation parameter. 

 
The unperturbed Hamiltonian for a system of boson-fermion is obtained as 

𝐻𝑜𝑏𝑓 =  ℏ𝜔𝑖  𝑎𝑖
+𝑎𝑖 +

1

2
                                            (23) 

 Substituting equation (11) into equation (22), the perturbation potential becomes 

𝜆𝑥4 = 𝜆   
ℏ

2𝜇𝑏𝑓 𝜔
 

1

2
 𝑎𝑖 + 𝑎𝑖

+    

4

                                         (24) 

Since it is a mixed system of boson-fermion the reduced mass is obtained as 

𝜇𝑏𝑓 =
𝑚𝑏𝑚𝑓  

𝑚𝑏 +𝑚𝑓
                                             (25) 

adding equation (23) and equation (24), the perturbed Hamiltonian for the mixed  system of boson-
fermion becomes 

𝐻𝑏𝑓 =   ℏ𝜔  𝑎𝑖
+𝑎𝑖 +

1

2
 + 𝜆   

ℏ

2𝜇𝑏𝑓 𝜔
 

1

2
 𝑎𝑖 + 𝑎𝑖

+  

4

  𝑖                                                   (26) 
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Similarly the curly bracket  𝑎𝑖𝑏 + 𝑎𝑖𝑏
+  4  can be expanded, simplified and replaced by its equivalent of n 

and the resultant perturbed Hamiltonian for the mixed species 𝐻𝑏𝑓     obtained as 

𝐻𝑏𝑓 =  ℏ𝜔  𝑎𝑖
+𝑎𝑖 +

1

2
 + 𝜆𝑖   

ℏ

2𝜇𝑏𝑓 𝜔
 

2

  6𝑛2 + 6𝑛 + 3                                      (27) 

The first term is the zero energy of the system; second term is the interaction potential for bosons and 

fermions. It’s this term that causes the anharmonicity of the otherwise harmonic interaction. 

 
The total effective Hamiltonian for the binary atomic mixture from equation (4) becomes 

𝐻𝑒𝑓𝑓 =  ℏ𝜔  𝑛 +
1

2
 +

𝐴

𝑖=1

  𝛽2  
ℏ

2𝑚𝑏𝑏 𝜔𝑖
 

3

18𝑛3 + 𝛾  
ℏ

2𝑚𝑏𝑏 𝜔𝑖
 

2

 6𝑛2 + 6𝑛 + 3  

𝑛

𝑖=1

+   ℏ𝜔  𝑛 +
1

2
 

𝑖

+ 𝜆   
ℏ

2𝜇𝑏𝑓 𝜔
 

2

  6𝑛2 + 6𝑛 + 3  +   𝜀𝑖 − 𝜆 𝑛

𝑖

 

                                          (28) 

2.3. Energy Theorem of the Binary System 

Perturbation theory is applied to find the energy levels of anharmonic oscillator. 

The eigenvalues and eigenfunctions of the unperturbed harmonic oscillator Hamiltonian, 𝐻𝑂  is well 

known. The unperturbed state |ϕ> can be written as |n> since it is characterized by its energy  n +
1

2
 ℏω  

2.3.1. Bosons 

The perturbed Hamiltonian for a system of bosons is given by equation (9). 
The energy eigenvalue of the unperturbed Hamiltonian for bosons is given as  

𝐻𝑜𝑏 |𝑛 >= 𝐸𝑛𝑏
0 |𝑛 >  =  𝑛 +

1

2
 ℏ𝜔|𝑛 >                                                                           (29) 

When the system is perturbed   Hb
′ |n >= Eb

′ |n > is the Eigenvalue problem that needs to be solved. The 

perturbed energy for a system of bosons to second order in terms of 𝑉𝑏𝑏  becomes 

      

𝐸𝑏𝑏 =  𝑛 +
1

2
 ℏ𝜔+< 𝑛 𝑉𝑏𝑏  𝑛 > +< 𝑛  𝑉𝑏𝑏

1

𝐸𝑛 −𝐻𝑜
𝑉𝑏𝑏  𝑛 >                                                (30) 

        

 First term in equation (30) is the zero energy, second term is the first order energy change and the third 

term is the second order energy. The value of  𝑉𝑏𝑏  is substituted in equation (30) we obtain. 

𝐸𝑏𝑏 =  𝑛 +
1

2
 ℏ𝜔+< 𝑛|   𝛾  

ℏ

2𝑚𝑏𝑏 𝜔 𝑖
 

2
 6𝑛2 + 6𝑛 + 3  |𝑛 > +𝑛

𝑖=1 <

𝑛|  𝛽2  
ℏ

2𝑚𝑏𝑏 𝜔 𝑖
 

3

18𝑛3 1

𝐸𝑛 −𝐻𝑜
|𝑛 >                    𝑛

𝑖=1                                                                                                                                                             

We determined the perturbed energy due to bosons as                                                                             (31) 

𝐸𝑏𝑏 =  𝑛 +
1

2
 ℏ𝜔 + 𝛾  

ℏ

2𝑚𝑏𝑏 𝜔𝑖
 

2

 6𝑛2 + 6𝑛 + 3 −
18ℏ2𝛽2

8𝑚3𝜔4
𝑛 𝑛 + 1 2  

 where n=0,1, 2, 3…….                                                    (32) 

2.3.2 Fermions 

The energy eigenvalue of the unperturbed Hamiltonian for fermions is given as  

𝐻𝑜𝑓 |𝑛 >= 𝐸𝑛𝑓
0 |𝑛 >  =  𝑛 +

1

2
 ℏ𝜔|𝑛 >                                                                                                  (33) 

When the system is perturbed the eigenvalue problem to be solved for fermions becomes 

𝐻𝑓𝑓
, |𝑛 > = 𝐸𝑓𝑓

, |𝑛 >= −𝜆 𝑎𝑓𝑓
+ 𝑎 |𝑛 >                                                                                                      (34) 

Adding equation (33) and equation (34) gives us the perturbed energy of the fermion system as  

𝐻𝑓𝑓 |𝑛 > = (𝑛 +
1

2
)ℏ𝜔|𝑛 > −𝜆 𝑎𝑓

+𝑎 |𝑛 >                                                           (35) 
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𝐸𝑓𝑓 =  𝑛 +
1

2
 ℏ𝜔 − 𝜆𝑛                                           (36) 

2.3.3 Mixed Boson-Fermion 
The energy eigenvalue of the unperturbed Hamiltonian for boson-fermion mixed system is given by  

𝐻𝑜𝑏𝑓 |𝑛 >= 𝐸𝑛𝑏𝑓
𝑜 |𝑛 >=  𝑛 +

1

2
 ℏ𝜔|𝑛 >                                       (37) 

when the system is perturbed , the Eigenvalue problem  to be solved is   

𝐻𝑓𝑏
,  𝑛 >= 𝐸𝑓𝑏

,  𝑛 >                                          (38) 

the perturbation potential  for the mixed system can be written as 

                               

𝐸𝑓𝑏
, =< 𝑛  𝜆

ℏ2

4𝜇2𝜔2
 𝑎 + 𝑎+ 4 𝑛 >                                      (39) 

 Similarly expanding the term 
 
 𝑎 + 𝑎+ 4 and replacing with its equivalent in terms of 𝑛  gives the result 

as 

𝐸𝑓𝑏
, = 𝜆  

ℏ2

4𝜇2𝜔2
  6𝑛2 + 6𝑛 + 3                                          (40) 

from the equation 

𝐸𝑏𝑓 = 𝐸𝑛𝑏𝑓
𝑜 + 𝐸𝑓𝑏           

,                                                      (41)  

  𝐸𝑏𝑓 =  𝑛 +
1

2
 ℏ𝜔 + 𝜆  

ℏ2

4𝜇2𝜔2
  6𝑛2 + 6𝑛 + 3                                        (42) 

The total energy of the grand canonical binary system can be obtained by adding equations (31), equation 

(36) and equation (42)  

𝐸𝑇 =  𝑛 +
1

2
 3ℏ𝜔 + 𝛾  

ℏ

2𝑚𝑏𝑏 𝜔𝑖
 

2

 6𝑛2 + 6𝑛 + 3 −
18ℏ2𝛽2

8𝑚3𝜔4
𝑛 𝑛 + 1 2 

                                                                  +  𝜆  
ℏ2

4𝜇𝑏𝑓
2 𝜔2  6𝑛2 + 6𝑛 + 3 − 𝜆 𝑛                                         

                                                                                                                                          (43) 

 

2.4 Specific Heat and Transition Temperature 
At the transition temperature, the probability that a normal mode of angular frequency has nk phonons at 

temperature T can be written as  

      

𝜌𝑛 = 𝑒𝑥𝑝
 
−∆𝐸𝑇

κΤ
 
                                          (44) 

   

where 𝐸𝑇, is the total energy of binary system given by equation (43) and  

the normalization constant is obtained from 

           
 𝜌𝑛 = 1   𝑛                                             (45) 

Hence the expectation value of total energy can be expressed as follows 

𝑒

 

𝐸𝑛 =  𝑛 +
1

2
 3ℏ𝜔 +  

 
 
 

 
 3

2
𝛾  

ℏ

𝑚𝑏𝑏 𝜔𝑖
 

2

 𝑛2 + 𝑛 +
1

2
 −

18ℏ2𝛽2

8𝑚𝑏𝑏
3 𝜔4

 𝑛3 + 2𝑛2 + 𝑛 

+

 
3

2
𝜆  

ℏ2

𝜇𝑏𝑓
2 𝜔2

  𝑛2 + 𝑛 +
1

2
 − 𝜆𝑛  

 
 
 

 
 

𝑒 
−∆𝐸𝑇

κΤ
   

 

                                                                                                                                                                  (46) 
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The specific heat capacity can be determined using the following relation   

𝐶 =
𝜕𝐸𝑛  

𝜕𝑇
                                               (47) 

 hence  

𝐶 =

 
 
 

 
 3

2
𝛾  

ℏ

𝑚𝑏𝑏 𝜔𝑖
 

2

 𝑛2 + 𝑛 +
1

2
 −

18ℏ2𝛽2

8𝑚𝑏𝑏
3 𝜔4

 𝑛3 + 2𝑛2 + 𝑛 

+

 
3

2
𝜆  

ℏ2

𝜇𝑏𝑓
2 𝜔2

  𝑛2 + 𝑛 +
1

2
 − 𝜆 𝑛   

 
 
 

 
 

ℏ𝜔

𝑘𝑇2
𝑒 

−ℏ𝜔
κΤ

 
 

                                                                                                                       

                                                                                                                                                                   (48) 
The transition temperature TC of the system is obtained from the condition that:   

 
𝜕𝐶

𝜕𝑇
 

𝑇=𝑇𝑐

= 0                                                        (49) 

−2

𝑇𝑐
3 +

ℏ𝜔

Κ𝑇𝑐
4 = 0                                                 (50) 

Making 𝑇𝑐  the subject     

           𝑇𝑐 =
ℏ𝜔

2k
                                                                                                                             (51)                            

                                                                                      

where TC –critical temperature,  Planck’s constant,  Harmonic oscillator frequency k= Boltzmann 

constant. 

2.5. Entropy(S)  

The expression relating entropy S to temperature T is given by 





Q
S or 

𝑆2 − 𝑆1 =  𝑑𝑆 =  
𝑑𝑄

𝑇

2

1

2

1
=  

𝑚𝐶𝑑𝑇

𝑇

2

1
                                                   (52) 

The entropy of the system then determined to be 

 

𝑆 𝑇 =

 
 
 

 
 3

2
𝛾  

ℏ

𝑚𝑏𝑏 𝜔𝑖
 

2

 𝑛2 + 𝑛 +
1

2
 −

18ℏ2𝛽2

8𝑚𝑏𝑏
3 𝜔4

 𝑛3 + 2𝑛2 + 𝑛 

+

 
3

2
𝜆  

ℏ2

𝜇𝑏𝑓
2 𝜔2

  𝑛2 + 𝑛 +
1

2
 − 𝜆 𝑛   

 
 
 

 
 

1

Τ
𝑒  

ℏ𝜔

κΤ
 +

𝜅

ℏ𝜔
𝑒− 

∆ℏ𝜔
𝑘𝑇

 
 

                                                                                                                                                                (53) 

2.6. Essential Parameters for Data Analysis 

Since  3x   and  4x  must have dimensions of energy
22 TML . The dimensions of   and   should 

be 
21  TL  and 

22  TML respectively, since 𝑥 which is the displacement has the dimension of length L. 

Therefore a parameter ao which is assumed to be fundamental to the perturbation parameters
   

𝛾 and 𝛽 has 

been introduced. This parameter ao is defined as the scattering length between boson-boson. The 

scattering length is taken as:𝑎𝑜 = 1.3 × 10−13𝐴
1

3  𝑐𝑚 , (Khanna et al,2010) where A is the mass number. 
The perturbation parameters can therefore be defined as: 

3

oa





    , 4

oa





 ,

3

2
22 3

2










V

N

m

A







,where m is the molar mass, V is the molar volume and NA is 

the number of particles in one mole, that is Avogadro’s number whose value is 6.02544×10
23

 mol
-1 

. The 
following values for different physical quantities

 
have been used. 
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𝑝𝑙𝑎𝑛𝑐𝑘𝑠  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

2𝜋
= ℏ  ,   is given as 1.054x10

-27
 erg-s, Boltzman’s constant k𝐵 is given as 8.167x10

-5 
eV, 

and 
𝑡𝑕𝑒 𝑎𝑛𝑔𝑢𝑙𝑎𝑟  𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦   

2𝜋
(𝜔) = 6 × 1022𝑠−1. 

 

The experimental works by Chan et al., (1992, 1996)and Wilks  and Bett ,(1994) mainly focused on 
molar quantities of helium-3 and helium-4,the molar mass of helium-3 and helium -4 are 2.80g and 3.92g 

respectively. Boson-fermion reduced molar mass 1.63x10
-3 

kg, n is the occupation number   given as 0, 

1,2…,Boson molar mass mb   as 3.92x10 
-3 

kg. Fermion molar mass mf as 2.80x10 
-3

kg, Boson chemical 

potential  as 6.215x10 
-28

 eV, and  Fermion chemical potential as 3.184x10
-27

eV. 
 

RESULTS AND DISCUSSION 

Results  
Equation (46) was used to compute the values of internal energy in response to changes in the occupation 

number of states.  Total energy vs occupation number was studied and found to be linear as shown in 

figure 1.the zero point energy is found to be 0.5j.  
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Figure 1: Variation of Total Energy vs against the occupation number of states 

 
Using equation (48),the variation of specific heat versus temperature were studied and found to have a 

peak or turning point in the vicinity of T=0.5k

0

2000

4000

6000

8000

1 10
4

0 0.5 1 1.5 2

sp
ec

ific
 h

ea
t 

temperature in kelvin
 

Figure 2: The graph of specific heat against temperature 
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Equation (53) the variation of Entropy with temperature of the binary mixture, is found to be a curve with 

a gently decreasing slope nearly saturating at 1.3k. 
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Figure 3: Variation of Entropy with temperature 

Discussion                                                    
At low temperatures the main interactions are low energy pair interactions with more contribution from S-

wave scattering and characterized, in this particular case, by scattering length. Of course we project that at 

absolute zero temperature (zero Kelvin temperature) particles form a condensate and fermions will appear 
to interact in such a manner as to cause the system to exhibit bosonic characteristics. The pairing of 

fermions will lead to zero total spin and momentum respectively, effectively forming a boson. The 

particles are paired in the sense that their movement is strongly correlated but not physically bound in 

close proximity like in a case of a molecule.  
This in essence makes the boson-boson and fermion-fermion components to inherently possess nearly 

similar properties at near zero Kelvin temperature. The quantum degeneracy of the system is essentially 

the same but multiple occupation of a state is obviously forbidden for fermions. 
The weak interaction of fermions is mediated by the lattice and approaches zero at absolute zero 

temperature Kelvin.  Superfluidity in fermions is exhibited on the basis of interaction and is a 

phenomenon that is realized at any temperature below a finite transition temperature. The density 

distribution is expected to be similar because boson-boson interaction is repulsive as opposed to the 
quantum pressure for fermions. Bosons should be localized in the absence of any interactions with 

fermions whereas fermionic density fluctuations are localized within a specified distance-the localization 

length. The localization length of bosons is therefore controlled by the interaction with fermions. The 
BEC cannot be stable in a system that is basically attractive hence boson-boson particles will be expected 

to be destabilized close to a feshback resonance, unlike fermions which stabilizes. 

The many body mixtures of particles with different quantum statistics are not well understood 
theoretically and are believed to show different behavior from pure systems of bosons and fermions.  For 

low attraction between boson-fermion, there exist a Fermi sphere of fermions, the bosons will occupy the 

ground state and form a pure Bose Einstein condensate caused by purely bosonic quantum fluctuations. 

Increased boson-fermion causes abound state.  BEC vanishes at a point when fermions are more than 
bosons as all bosons pair up with fermions.  This is a second order phase transition which may occur at 

the peak of the curve on figure 2. 

Particle disorder decreases with decrease in the total energy of the system.  Figure 3 suggests that 
particles settles and interacts less as the system gives out energy. This is in agreement with conventional 

knowledge and concurs with what (Khanna et al., 2010) determined when they studied the anharmonic 
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perturbation of the neutron-proton pairs by the unpaired neutrons in heavily finite nuclei, where the 

emission of 𝞪 and 𝛾 radiations simply serves to stabilize the system. It’s also in good agreement by works 

done by( Ayodo 2008, Ayodo et al., 2010) on low temperature statistical thermodynamics of binary bose-
fermi system , and(Chan et al., 1992,1996) on the effect of disorder on the superfluid 3He-4He . 
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Conclusion 
Different authors (Molmer et al., 1998), (Amoruso et al., 1998), (Miyawaka et al., 2000), (Nygaard et al., 

1999), (Roth et al., 2002), (Akdeniz et al., 2002), (Yi et al., 2001), (Al-Hayek et al., 1999) and (Mezzanti 

et al., 2000) studied   binary mixtures using different models. In this research, the particles are weakly 
interacting and assume that the bosons are in pure Bose-Eistein condensate, from which we conclude as 

follows; in the binary mixture of boson and fermion the energy density of bosons and fermions are 

independent of each other. The total energy of the binary system largely depends on the occupation 

number of particles, as the occupation number of particles increase energy increases in the same 
proportion. This concurs with works of other authors (Ayodo, 2008), (Khanna et al., 2010), (Chan et al., 

1992, 1996).The values of specific heat for the binary mixture decreases as the mixture is cooled to near 

zero temperature Kelvin an indication that energy is being released to the surrounding as the system 
cools. The transition temperature for the  

3
He-

4
He mixture from figure 2 is 0.4Kelvin.Entropy is a measure 

of molecular disorder (Ayodo, 2008) when the system cools, the internal energy of the particles decreases 

resulting in less and less particle motion. The graph in figure 3, confirms this observation by predicting 
that entropy decreases with decrease in temperature. 
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