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ABSTRACT 

 In this paper, a new theorem on degree of approximation of a function belonging to the W (Lp, )(t ) 
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INTRODUCTION 

The degree of approximation belonging to Lip  , Lip ( p, ), Lip ( )),( pt  and  W (Lp, )(t ) class 

using  Cesároo, Nörlund and generalized Nörlund  summability methods has been discussed a numbers of 

researchers like chandra (Borwein, 1958; Holland, 1981; Holland and Sahney, 1976; Khan, 1974; Lal and 

Tripathi, 2000; Qureshi1982 and Tiwari et al., 2010) obtained  a result on Degree of approximation of 
Weighted class functions by Product Means of its Fourier series and (Tiwari and Bhatt 2011) obtained a 

result on degree of approximation of the function belonging to Lip   Class by (N, pn, qn) (E, q) means of 
its Fourier series. In this paper our aim is to generalize the result of (Tiwari et al., 2011) On Degree of 

approximation of weighted class functions by Product Means of its Fourier series. 

Definition and Notation  

Let f(x) be periodic with period 2 and integrable in the Legesgue sense. The Fourier series f(x) is given 

by   
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L- norm of a function f : R→R is defined by 
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The degree of approximation of a function of f : R→R by a trigonometric polynomial  tn of order n is 

defined by Zygmund (11) 
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Given a positive increasing function )(t and an integer p 1 , f  Lip   ifpt ,),(  
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In case 0 , W ))(,( tLp   class reduces to the Lip  pt),(  class and if 
 tt )( , then Lip  pt),(  

class reduces to the Lip ( p, ) class and if p then Lip ( p, ) class reduces to the Lip  class. We 

observe that  

 

Lip   ),( pLip  1,10))(,()),((  pfortLpWptLip   

  

Let 


1n

nu  be a given infinite series with sequence of its n
th
 partial sums  ns . 

The (E,1) transform is defined as the n
th
 partial sum of (E,1) summability, its denoted by 

1

nE  and given by 
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Let  np  and  nq  be the sequence of positive constants such that  
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For two given sequences {pn} and {qn} the convolution (pq)n is defined by 
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The generalized Nörlund transform  (N,pn,qn)  of the sequence {sn} is the sequence  .,qp

nt  If  
qp

nt
,
 s  as 

n then the sequence {sn}is said to be summable by generalized Nörlund method (N,pn,qn) to s 

(Borwein(1)). 
 

The necessary and sufficient condition for (N, pn, qn) method of summability to be regular are 
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The (N,pn,qn) transform of the (E,1) transform is defines as 
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We shall use the following notations:- 

(i) )11.2()(2)()()( xftxftxft   

 (ii) )12.2(
2

)1(sin.
2

cos
1

)(
0

)(,, 1 




 
n

k

kn

knk

n

Eqp

n

t
kn

t
qp

R
tN  

 

Known Reults 
Tiwari et al.(10) obtained  a result On Degree of approximation of Weighted class functions by Product 

Means of its Fourier series.They have proved the following theorem: 

Theorem 3.1: If f : R  R is 2π- periodic function belonging to the Weighted class W(L
p
,(t)),(p≥1) then 

the degree of approximation of function f by the (N,pn) (E,1) product means of its Fourier series satisfies 

,for n=0,1,2,3,… 
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Provided {pn} is non-negative, monotonic and non-increasing sequence and (t) satisfies the following 

conditions  
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Where   is an arbitrary number such that q (1- )-1 >0, 

 Conditions (3.1) and (3.2) holds uniformly in x and  
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Main Theorem: In this paper our aim is to generalize the above result of Tiwari et al., 2010. In fact, we 

prove the following theorem:  
Let (N,pn,qn) be a regular generalized Nörlund method defined by a positive,monotonic,non-increasing 

sequences {pn} and {qn}of real constants such that 
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.0  . If f is 2π- periodic function, 

Lebesgue integrable on (-π,π) and is belonging to Weighted W(Lp,(t)) class,p≥1,then the degree of 
approximation of  function f is given by 
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Provided (t) satisfies the following conditions: 
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Where   is an arbitrary number such that q (1- )-1 >0, 

Conditions (4.3) and (4.4) holds uniformly in x and where 1
11
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 Such that 1 p  . 
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Lemmas: For the proof of our theorem, we require following lemmas: 
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This complete proof of the lemma (5.1). 
 

 

Proof: (Lemma (5.2): 
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Proof of the Main Theorem: 
Let Sn(x) denotes the n

th
 partial sum of the Fourier series at t=x we have  
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Combining equation (6.1) (6.2)and(6.3),we have 
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Using the Lp-norm we get  
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 This completes the proof of the our theorem. 
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Applications: The following corollaries can be derived from the theorem: 

Corollary 7.1:If β=0 and (t)  = t
α
 , 0 <α ≤ 1 , then the W (Lp,t) class, 1p ,reduces to Lip(α,p) 

class and the degree of approximation of a function  xf ,  2π- periodic function f ε Lip(α,p) , 
p

1
 < α ≤  

1 is given by 
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Corollary7.2:If p in corollary 7.1 , for 0 < α < 1 ,then the  Lip(α,p) class reduces to Lip α class and 

the degree of approximation of a function  xf ,  2π- periodic function f ε Lip α  , 0 < α <  1 is given by 
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