Research Article

ON DEGREE OF APPROXIMATION OF FUNCTIONS BELONGING TO W (L_P , $\xi(T)$) CLASS BY (N, P_N , Q_N)(E,1) PRODUCT MEANS OF ITS FOURIER SERIES

*Sandeep Kumar Tiwari and Uttam Upadhyay

School of studies in Mathematics, Vikram University, Ujjain (M.P.)
*Author for Correspondence

ABSTRACT

In this paper, a new theorem on degree of approximation of a function belonging to the W (Lp, $\xi(t)$) class by (N, p_n, q_n) (E, 1) product summability means of Fourier series have been established.

Key Words: Fourier Series, Degree of approximation, W (Lp, $\xi(t)$) class of fuction, (N, p_n , q_n) mean, (E, 1) mean, (E, 1) mean, (E, 1) mean, Lebesgue Integral. **2010 Mathematics Subject Classification:** 42B05, 42B08.

INTRODUCTION

The degree of approximation belonging to Lip α , Lip (α, p) , Lip $(\xi(t), p)$ and W (Lp, $\xi(t)$) class using Cesároo, Nörlund and generalized Nörlund summability methods has been discussed a numbers of researchers like chandra (Borwein, 1958; Holland, 1981; Holland and Sahney, 1976; Khan, 1974; Lal and Tripathi, 2000; Qureshi1982 and Tiwari *et al.*, 2010) obtained a result on Degree of approximation of Weighted class functions by Product Means of its Fourier series and (Tiwari and Bhatt 2011) obtained a result on degree of approximation of the function belonging to Lip α Class by (N, p_n, q_n) (E, q) means of its Fourier series. In this paper our aim is to generalize the result of (Tiwari *et al.*, 2011) On Degree of approximation of weighted class functions by Product Means of its Fourier series.

Definition and Notation

Let f(x) be periodic with period 2π and integrable in the Legesgue sense. The Fourier series f(x) is given by

$$f(x) \sim \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) \equiv \sum_{n=0}^{\infty} A_n(x)$$
 (2.1)

Lp - norm is defined by

$$||f||_{p} = \left(\int_{0}^{2\pi} |f(x)|^{p} dx\right)^{1/p}, \ p \ge 1$$
 (2.2)

 L_{∞} - norm of a function $f: R \rightarrow R$ is defined by

$$||f||_{\infty} = Sup\{|f(x)| : x \in R\}$$
 (2.3)

The degree of approximation of a function of $f: R \rightarrow R$ by a trigonometric polynomial t_n of order n is defined by Zygmund (11)

$$||t_n - f||_{\infty} = \sup\{t_n(x) - f(x)|: x \in \mathbb{R}\}$$
(2.4)

A function $f \in Lip \alpha$ if

Research Article

$$|f(x+t) - f(x)| = O\left(t\right)^{\alpha} \text{ for } 0 < \alpha \le 1$$
(2.5)

A function $f(x) \in \text{Lip } (\alpha, p)$ for $0 \le x \le 2\pi$ if

$$\left(\int_{0}^{2\pi} |f(x+t) - f(x)|^{p} dx\right)^{1/p} = O(|t|^{\alpha}), \ 0 < \alpha \le 1, \ p \ge 1$$
 (2.6)

Given a positive increasing function $\xi(t)$ and an integer $p \ge 1$, $f \varepsilon$ Lip $(\xi(t), p)$, if

$$\left(\int_{0}^{2\pi} \left| \left\{ f(x+t) - f(x) \right\} \right|^{p} dx \right)^{1/p} = O(\xi(t))$$
 (2.7)

and $f \in W(Lp, \xi(t))$ if

$$\left(\int_{0}^{2\pi} \left| \left\{ f(x+t) - f(x) \right\} \sin^{\beta} x \right|^{p} dx \right)^{1/p} = O(\xi(t)), \ \beta \ge 0$$
 (2.8)

In case $\beta = 0$, W $(Lp, \xi(t))$ class reduces to the Lip $(\xi(t), p)$ class and if $\xi(t) = t^{\alpha}$, then Lip $(\xi(t), p)$ class reduces to the Lip (α, p) class and if $p \to \infty$ then Lip (α, p) class reduces to the Lip α class. We observe that

$$Lip \ \alpha \subseteq Lip(\alpha, p) \subseteq Lip(\xi(t), p) \subseteq W(Lp, \xi(t)) \ for \ 0 < \alpha \le 1, \ p \ge 1$$

Let $\sum_{n=1}^{\infty} u_n$ be a given infinite series with sequence of its nth partial sums $\{s_n\}$.

The (E,1) transform is defined as the n^{th} partial sum of (E,1) summability, its denoted by E_n^1 and given by

$$E_n^1 = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} s_k \to s, \text{ as } n \to \infty$$
 (2.9)

Let $\{p_n\}$ and $\{q_n\}$ be the sequence of positive constants such that

$$P_n = \sum_{k=0}^n p_k$$

$$Q_n = \sum_{k=0}^n q_k$$

and
$$R_n = \sum_{k=0}^{n} p_k q_{n-k} \neq 0 \ (n \ge 0)$$

Where P_n , Q_n and $R_n \rightarrow \infty$ as $n \rightarrow \infty$

Research Article

For two given sequences $\{p_n\}$ and $\{q_n\}$ the convolution $(p*q)_n$ is defined by

$$R_n = (p * q)_n = \sum_{k=0}^n p_k q_{n-k}$$

$$t_n^{p,q} = \frac{1}{R_n} \sum_{k=0}^n p_k \, q_{n-k} \, s_k$$
 .

The generalized Nörlund transform (N,p_n,q_n) of the sequence $\{s_n\}$ is the sequence $\{t_n^{p,q}\}$. If $t_n^{p,q} \to s$ as $n\to\infty$ then the sequence $\{s_n\}$ is said to be summable by generalized Nörlund method (N,p_n,q_n) to s (Borwein(1)).

The necessary and sufficient condition for (N, p_n, q_n) method of summability to be regular are

$$\sum_{k=0}^{n} |p_{n-k}| q_{k} = O(|R_{n}|) \text{ and } p_{n-k} = O(|R_{n}|), \text{ as } n \to \infty, \text{ for every fixed } k \ge 0, \text{for which } q_{k} \ne 0.$$

The (N,p_n,q_n) transform of the (E,1) transform is defines as

$$(N, p_n, q_n)(E, 1) = \frac{1}{R_n} \sum_{k=0}^{n} p_k q_{n-k} E_{n-k}^1$$
(2.10)

If

$$(N, p_n, q_n)(E,1) = \frac{1}{R_n} \sum_{k=0}^n p_k q_{n-k} E_{n-k}^1 \to s \, as \quad n \to \infty$$

Then $\sum_{n=1}^{\infty} u_n$ is said to be (N, p_n, q_n) (E,1) summable to s.

We shall use the following notations:-

(i)
$$\phi(t) = f(x+t) + f(x-t) - 2f(x)$$
 (2.11)

(ii)
$$N_n^{p,q,E_1}(t) = \frac{1}{R_n} \sum_{k=0}^n p_k q_{n-k} \cos^{(n-k)} \frac{t}{2} \cdot \sin(n-k+1) \frac{t}{2}$$
 (2.12)

Known Reults

Tiwari et al.(10) obtained a result On Degree of approximation of Weighted class functions by Product Means of its Fourier series. They have proved the following theorem:

Theorem 3.1: If $f: R \to R$ is 2π - periodic function belonging to the Weighted class $W(L^p, \xi(t)), (p \ge 1)$ then the degree of approximation of function f by the (N, p_n) (E, 1) product means of its Fourier series satisfies ,for n=0,1,2,3,...

$$\|(N, p_n)(E,1) - f(x)\|_p = O\left[(n+1)^{\frac{\beta+1}{p}} \xi\left(\frac{1}{n+1}\right)\right]$$

Provided $\{p_n\}$ is non-negative, monotonic and non-increasing sequence and $\xi(t)$ satisfies the following conditions

Research Article

$$\left\{ \int_0^{\frac{\pi}{n+1}} \left(\frac{t|\phi(t)|}{\xi(t)} \sin^{\beta} t \right)^p dt \right\}^{1/p} = O\left(\frac{1}{n+1}\right)$$
(3.1)

$$\left\{ \int_{\frac{\pi}{n+1}}^{\pi} \left(\frac{t^{-\delta} \sin^{\beta} t}{\xi(t)} |\phi(t)| \right)^{p} dt \right\}^{1/p} = O((n+1)^{\delta})$$
(3.2)

Where δ is an arbitrary number such that q (1- δ)-1 >0, Conditions (3.1) and (3.2) holds uniformly in x and

$$\left\{ \int_0^{\frac{\pi}{n+1}} \left(\left(\frac{\xi(t)}{t^{1+\beta}} \right)^q \right) dt \right\}^{1/q} = O\left(\xi \left(\frac{1}{n+1} \right) (n+1)^{\beta + \frac{1}{p}} \right)$$

Also hold in limit $t\varepsilon\left[\frac{\pi}{n+1},\pi\right]$, where $\frac{1}{p}+\frac{1}{q}=1$ Such that $1\le p\le\infty$.

Main Theorem: In this paper our aim is to generalize the above result of Tiwari *et al.*, 2010. In fact, we prove the following theorem:

Let (N,p_n,q_n) be a regular generalized Nörlund method defined by a positive,monotonic,non-increasing

sequences $\{p_n\}$ and $\{q_n\}$ of real constants such that $R_n = \sum_{k=0}^n p_k q_{n-k} \neq 0$. If f is 2π - periodic function,

Lebesgue integrable on $(-\pi,\pi)$ and is belonging to Weighted W(L_p, $\xi(t)$) class,p ≥ 1 ,then the degree of approximation of function f is given by

$$\|(N, p_n, q_n)(E, 1) - f(x)\|_p = O\left[(n+1)^{\frac{\beta+1}{p}} \xi\left(\frac{1}{n+1}\right) \right]$$
(4.1)

Provided \Box (t) satisfies the following conditions:

$$\left\{ \frac{\xi(t)}{t} \right\} \text{ is a decreasing sequence }, \tag{4.2}$$

$$\left\{ \int_0^{\frac{\pi}{n+1}} \left(\frac{t |\phi(t)|}{\xi(t)} \right)^p \sin^{\beta p} t dt \right\}^{1/p} = O\left(\frac{1}{n+1}\right)$$
(4.3)

$$\left\{ \int_{\frac{\pi}{n+1}}^{\pi} \left(\frac{t^{-\delta} |\phi(t)|}{\xi(t)} \right)^{p} dt \right\}^{1/p} = O\left((n+1)^{\delta} \right)$$

$$(4.4)$$

Where δ is an arbitrary number such that q (1- δ)-1 >0,

Conditions (4.3) and (4.4) holds uniformly in x and where $\frac{1}{p} + \frac{1}{q} = 1$ Such that $1 \le p \le \infty$.

Research Article

Lemmas: For the proof of our theorem, we require following lemmas:

Lemma (5.1):
$$\left| N_n^{p,q,E_1}(t) \right| = O(n+1)t, \quad \text{for } o \le t \le \frac{\pi}{n+1}.$$

Lemma (5.2):
$$|N_n^{p,q,E_1}(t)| = O(1)$$
, for $\frac{\pi}{n+1} \le t \le \pi$.

Proof: (Lemma (5.1):

For
$$0 \le t \le \frac{\pi}{n+1}$$
; we have
$$\left| N_n^{p,q,E_1}(t) \right| = \left| \frac{1}{R_n} \sum_{k=0}^n p_k \ q_{n-k} Cos^{(n-k)} \frac{t}{2} . Sin(n-k+1) \frac{t}{2} \right| \\
\le \frac{1}{R_n} \sum_{k=0}^n p_n \ q_{n-k} \left| Cos^{(n-k)} \frac{t}{2} \right| . \left| Sin(n-k+1) \frac{t}{2} \right| \\
= \frac{1}{R_n} \sum_{k=0}^n p_n . q_{n-k} . 1 . (n-k+1) \frac{t}{2} \quad (\because Sin(n-k+1) \frac{t}{2} \le (n-k+1) \frac{t}{2} \text{ and } Cos^{(n-k)} \frac{t}{2} \le 1) \\
= O((n+1)t) \left\{ \frac{1}{R_n} \sum_{k=0}^n p_k q_{n-k} \right\} \\
\left| N_n^{p,q,E_1}(t) \right| = O((n+1)t).$$

This complete proof of the lemma (5.1).

Proof: (Lemma (5.2):

For
$$\frac{\pi}{n+1} \le t \le \pi$$
; we have
$$\left| N_n^{p,q,E_1}(t) \right| = \left| \frac{1}{R_n} \sum_{k=0}^n p_n \, q_{n-k} \, Cos^{(n-k)} \, \frac{t}{2} \, Sin(n-k+1) \, \frac{t}{2} \right|$$

$$\le \frac{1}{R_n} \sum_{k=0}^n p_n \, q_{n-k} \, \left| Cos^{(n-k)} \, \frac{t}{2} \right| . \left| Sin(n-k+1) \, \frac{t}{2} \right|$$

$$\le \frac{1}{Rn} \sum_{k=0}^n p_n \, q_{n-k} . 1.1 \, \left(Because \, Cos^{(n-k)} \, \frac{t}{2} \le 1 \right)$$

$$= O(1) \left\{ \frac{1}{R_n} \sum_{k=0}^n p_k \, q_{n-k} \right\}$$

$$\left| N_n^{p,q,E_1}(t) \right| = O(1) .$$

This complete proof of the lemma (5.2)

Research Article

Proof of the Main Theorem:

Let $S_n(x)$ denotes the nth partial sum of the Fourier series at t=x we have

$$E_{n-k}^{1}(x) - f(x) = \frac{1}{2\pi} \int_{0}^{\pi} \frac{\phi(t)}{\sin t/2} \cos^{(n-k)} \frac{t}{2} \cdot \sin((n-k+1)) \frac{t}{2} dt$$

Now.

$$\frac{1}{R_{n}} \sum_{k=0}^{n} p_{k} q_{n-k} \left\{ E_{n-k}^{1}(x) - f(x) \right\} = \frac{1}{2\pi} \int_{0}^{\pi} \frac{\phi(t)}{\sin t/2} \cdot \frac{1}{R_{n}} \sum_{k=0}^{n} p_{k} q_{n-k} Cos^{(n-k)} t/2 \cdot Sin(n-k+1) \frac{t}{2} dt$$

$$\frac{1}{R_{n}} \sum_{k=0}^{n} p_{k} q_{n-k} E_{n-k}^{1}(x) - \frac{1}{R_{n}} \sum_{k=0}^{n} p_{n} q_{n-k} f(x) = \frac{1}{2\pi} \int_{0}^{\pi} \frac{\phi(t)}{\sin t/2} N_{n}^{p,q,E_{1}}(t) dt$$
(By(2.12))

$$(N,p_n,q_n)(E,1)-f(x) = \frac{1}{2\pi} \int_0^{\pi} \frac{\phi(t)}{Sin \frac{t}{2}} N_n^{p,q,E_1}(t) dt$$
(By(2.10))

Since, $Sint/2 \ge \frac{t}{\pi}$, it follows that

$$\begin{aligned} &|(N, p_{n}, q_{n})(E, 1) - f(x)| \leq \frac{1}{2} \int_{0}^{\pi} \frac{|\phi(t)|}{t} |N_{n}^{p,q,E_{1}}(t)| dt \\ &= \frac{1}{2} \left(\int_{0}^{\pi/n+1} \int_{\pi/n+1}^{\pi} \frac{|\phi(t)|}{t} |N_{n}^{p,q,E_{1}}(t)| dt \right) \\ &= \frac{1}{2} \int_{0}^{\pi/n+1} \frac{|\phi(t)|}{t} |N_{n}^{p,q,E_{1}}(t)| dt + \frac{1}{2} \int_{\pi/n+1}^{\pi} \frac{|\phi(t)|}{t} |N_{n}^{p,q,E_{1}}(t)| dt \\ &= I_{1} + I_{2} (Say) \end{aligned}$$

$$(6.1)$$

Let us consider, I_1 first

$$I_{1} = \frac{1}{2} \int_{0}^{\pi/n+1} \frac{|\phi(t)|}{t} |N_{n}^{p,q,E_{1}}(t)| dt$$

Now using Hölder inequality and in view of $(\sin t)^{-1} \le \frac{\pi}{t}$, $0 < t \le \frac{\pi}{2}$

$$I_{1} = \frac{1}{2t} \left\{ \left[\int_{0}^{\pi/n+1} \left[\frac{t|\phi(t)|}{\xi(t)} \right] \sin^{\beta} t \right]^{p} dt \right\}^{1/p} \cdot \left\{ \int_{0}^{\pi/n+1} \left[\frac{\xi(t)}{t \sin^{\beta} t} \cdot |N_{n}^{p,q,E_{1}}(t)| \right]^{q} dt \right\}^{1/q}$$

$$= O\left(\frac{1}{n+1} \right) O((n+1)t) \cdot \frac{1}{2t} \left\{ \int_{0}^{\pi/n+1} \left[\frac{\xi(t)}{t^{1+\beta}} \right]^{q} dt \right\}^{1/q}$$
(By. (4.3) and Lemma (5.1))

Research Article

$$= O(1) \left(\xi \left(\frac{1}{n+1} \right) (n+1)^{\beta + \frac{1}{p}} \right)$$

$$I_{1} = O\left((n+1)^{\beta + \frac{1}{p}} \xi \left(\frac{1}{n+1} \right) \right)$$
Now consider
$$I_{2} = \frac{1}{2} \int_{\frac{\pi}{p+1}}^{\pi} \frac{|\phi(t)|}{t} . |N_{n}^{p,q,E_{1}}(t)| dt$$

$$(6.2)$$

Again using Hölder inequality and in view of $\sin \theta \ge \frac{2t}{\pi}$

$$I_{2} = \frac{1}{2t} \left\{ \int_{\pi/n+1}^{\pi} \left(\frac{t^{-\delta} \operatorname{Sin}^{\beta} t}{\xi(t)} \middle| \phi(t) \middle| \right)^{p} dt \right\}^{1/p} \cdot \left\{ \int_{\pi/n+1}^{\pi} \left(\frac{\xi(t)}{t^{-\delta} \operatorname{Sin}^{\beta} t} \middle| N_{n}^{p,q,E_{1}} \middle| \right)^{q} dt \right\}^{1/q}$$

$$= O((n+1)^{\delta}) O(1) \cdot \frac{1}{2t} \left\{ \int_{\pi/n+1}^{\pi} \left[\frac{\xi(t)}{t^{-\delta} \operatorname{Sin}^{\beta} t} \right]^{q} dt \right\}^{1/q} \quad (by. (4.4) \, and Lemma (5.2)$$

$$= O((n+1)^{\delta}) \cdot \frac{1}{2} \left\{ \int_{\pi/n+1}^{\pi} \left(\frac{\xi(t)}{t^{1-\delta} \operatorname{Sin}^{\beta} t} \right)^{q} dt \right\}^{1/q}$$

$$= O((n+1)^{\delta}) \cdot O\left(\xi\left(\frac{1}{n+1}\right)(n+1)^{\beta+\frac{1}{p}-\delta} \right)$$

$$I_{2} = O\left((n+1)^{\frac{\beta+\frac{1}{p}}{p}} \xi\left(\frac{1}{n+1}\right)\right) \quad (6.3)$$

Combining equation (6.1) (6.2) and (6.3), we have

$$|(N, p_n, q_n)(E,1) - f(x)| = O\left((n+1)^{\beta + \frac{1}{p}} \xi\left(\frac{1}{n+1}\right)\right)$$

Using the Lp-norm we get

$$\begin{aligned} & \left\| (N, p_n, q_n)(E, 1) - f(x) \right\|_p = \left(\int_0^{2\pi} \left| (N, p_n, q_n)(E, 1) - f(x) \right|^p dx \right)^{1/p}, (1 \le p < \infty) \\ & = O\left[\left\{ \int_0^{2\pi} \left(n + 1 \right)^{\beta + \frac{1}{p}} \xi \left(\frac{1}{n+1} \right)^p dx \right\}^{1/p} \right] \\ & = O\left[(n+1)^{\beta + \frac{1}{p}} \xi \left(\frac{1}{n+1} \right) \right], 1 \le p < \infty \end{aligned}$$

This completes the proof of the our theorem.

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) An Online International Journal Available at http://www.cibtech.org/jpms.htm

2013 Vol. 3 (2) April-June, pp.79-86/Tiwari and Upadhyay

Research Article

Applications: The following corollaries can be derived from the theorem:

Corollary 7.1:If $\beta=0$ and $\xi(t)=t^{\alpha}$, $0 < \alpha \le 1$, then the W $(L_p, \Box t\Box)$ class, $p \ge 1$ reduces to Lip (α,p)

class and the degree of approximation of a function f(x), 2π - periodic function $f \in \text{Lip}(\alpha,p)$, $\frac{1}{p} < \alpha \le 1$

1 is given by

$$\|(N, p_n, q_n)(E,1) - f(x)\|_p = O\left(\frac{1}{(n+1)^{\alpha - \frac{1}{p}}}\right).$$

Corollary 7.2: If $p \to \infty$ in corollary 7.1, for $0 < \alpha < 1$, then the $Lip(\alpha,p)$ class reduces to $Lip \alpha$ class and the degree of approximation of a function f(x), 2π -periodic function $f \in Lip \alpha$, $0 < \alpha < 1$ is given by

$$\|(N, p_n, q_n)(E,1) - f(x)\|_{\infty} = O\left(\frac{1}{(n+1)^{\alpha}}\right).$$

REFERENCES

Borwein D (1958). On product of sequences, Journal of the London Mathmatical Society 33 352-357.

Chandra P (1987). Functions belonging to Lip α , Lip (α , p) spaces and their approximation, soochow *Journal of Mathmatics* **13** 9-22.

Holland A S B (1981). A survey of degree of approximation of continuous functions, *SIAM Review* **23** (3) 344-379.

Holland A S B and Sahney B N (1976). On the degree of approximation by (E,q) means, *Studia Scientiarum Mathematicarum Hungarica* 11 431-435.

Khan H H (1974). On the degree of approximation of function belonging to class Lip (α, p) , *Indian Journal of Pure and Applied Mathmatics* **5** 132-136.

Lal S and Tripathi V N (2000). On the degree of Lipschitz function by (N, p_n) (C,1) means of its Fourier series, Ranchi Univ. *Mathmatical Journal* **31** 79-85.

Qureshi K (1982). On the degree of approximation of a function belonging to the class Lip (α,p) , *Indian Journal of Pure and Applied Mathmatics* 13(4) 466-470.

Qureshi K (1982). On the deree of approximation of a function belonging to the Weighted (L^p , $\xi(t)$) class, *Indian Journal of Pure and Applied Mathmatics* 13(4) 471-475.

Tiwari S K and Bhatt D K (2011). On the degree of approximation of Lipschitz function by product summability method, Vijanana parishad Anusandhan Patrika **54**(4) 53-58.

Tiwari S K, Upadhyay U and Bhatt D K (2010). Degree of Approximation of Weighted Class Functions by Product Means of Its Fourier series, Vikram *Mathematical Journal* 30.

Zygmund A (1968). Trigonometric series 2. Cambridge, Uni. Press. Cambridge.