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ABSTRACT 

Throughout this note, K denotes a complete, non-trivially valued, ultrametric field of characteristic zero.  

Infinite matrices and sequences have entries in K. We prove Steinhaus type theorems for the Nörlund, 
Natarajan and Euler summability matrices in K. 
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INTRODUCTION 
In this short note, K denotes a complete, non-trivially valued, ultrametric field of characteristic zero.  The 

p-adic field Qp for a prime p is one such field.  Infinite matrices and sequences have entries in K.  To 

make the paper self-contained, we recall certain concepts, Definitions and Theorems.  Given an infinite 

matrix A = (ank), ank  K, n, k = 0, 1, 2, ... and a sequence x = {xk}, xk  K, k = 0, 1, 2, ..., by the A-

transform of x = {xk}, we mean the sequence A(x) = {(Ax)n}, 

0,1,2,...,n,xa(Ax)
0k

knkn 




 

it being assumed that the series on the right converge.  If 


n
n

(Ax)lim  ℓ, we say that  

x = {xk} is summable A or A-summable to ℓ.   
 

If X, Y are sequence spaces in K, we write A = (ank)  (X, Y) if {(Ax)n}  Y, whenever x = {xk}  X.  

Let ℓ denote the ultrametric Banach space of all bounded sequences in K and c denote the closed 

subspace of ℓ consisting of all convergent sequences in K.  If A  (c, c), we say that A is “conservative”.  

If A  (c, c) and ,xlim(Ax)lim k
k

n
n 

  x = {xk}  c, we say that A is regular. The set of all regular 

matrices is denoted by (c, c; P), P denoting “preservation of limits”.  The following result, which 

characterizes a conservative matrix and a regular matrix in terms of its entries, is well-known (see, for 

instance, (Monna, 1963)). 

Theorem 1.1: A = (ank)  (c, c), i.e., A is conservative if and only if 

 nk
kn,

asup ;         (1.1) 

 0,1,2,...;k,αalim knk
n




       (1.2) 

and 

 α.alim
0k

nk
n







        (1.3) 

Further, A  (c, c; P), i.e., A is regular if and only if (1.1), (1.2), (1.3) hold with k = 0,  

k = 0, 1, 2, ... and  = 1. 
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Again, the following result is well-known (Natarajan, 1978). 
 

Theorem 1.2: (Steinhaus) Given any regular matrix A, there is a bounded, divergent sequence which is 

not A-summable.  Symbolically, the result can be written as 

(c, c; P)  (ℓ, c) = . 

 
 We call any result of the above form a “Steinhaus type theorem”. 

Steinhaus Type Theorems in K 

If X, Y are sequences spaces with a notion of “limit”, by (X, Y; P), we mean the set of all infinite 

matrices A  (X, Y) with the “preservation of corresponding limits”. 

 
Steinhaus type theorems in K were studied earlier by Natarajan in 1987, 1996, 1999, 2008. 

 

 We recall the following which is needed in the sequel. 
 

Definition 2.1: (Srinivasan,1965) Given the sequence p = {pn}, the Nörlund method (N, pn) is defined by 

the infinite matrix (ank), where 















n,k0,

n;k,
P

p

a
n

kn

nk  

where |pn| < |p0|, n = 1, 2, ... and ,pP
n

0k

kn 


  n = 0, 1, 2, ... . This matrix (ank) is denoted by (N, p) and it 

is called a Nörlund matrix. 

 

Theorem 2.2: (Natarajan, 1994) The Nörlund method (N, pn) is regular if and only if 

0.plim n
n




 

 

Definition 2.3: (Natarajan, 2003) Given  = {n} with 0,λlim n
n




 the Natarajan method (M, n) is 

defined by the infinite matrix (bnk), where 












n.k0,

n;k,λ
b

kn

nk  

The matrix (bnk) is denoted by (M, ) and we call it a Natarajan matrix. 
 

 

 

Theorem 2.4: (Natarajan, 2012) The Natarajan method (M, n) is regular if and only if 

1.λ
0n

n 




 

 

Definition 2.5: (Natarajan, 2003) Let r  K such that |1r| < 1.  Then Euler method of order r or the (E, r) 

method is defined by the infinite matrix ),(e(r)

nk  where: 

If r  1, 
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










n,k0,

n;k,r)(1rC
e

knk

k

n

(r)

nk
 

,
! k)(n !k 

!n 
Ck

n


  k  n; 

If r = 1, 










n.k0,

n;k1,
e(1)

nk  

)(e(r)

nk  is called the (E, r) matrix or Euler matrix of order r. 

 

Theorem 2.6: (Natarajan, 2003) The (E, r) method is always regular. 

 
 We now prove Steinhaus type theorems for the Nörlund, Natarajan and Euler matrices. 

 

 For convenience, we denote the set of all sequences which are (N, pn), (M, n),  

(E, r) summable by (N, p), (M,), (E, r) respectively (so that we understand the meaning of these symbols 

according to the context).  In this context, we note that (N, p), (M, ), (E, r)  ℓ (see Natarajan, 2012;  
Deepa et al., Srinivasan, 1965). 

 

Theorem 2.7: A = (ank)  (c, (N, p)) if and only if 

 0,1,2,...;n0,alim nk
k




        (2.1) 

 ;ap
P

1
sup

n

0i

ki,ni

nkn,




         (2.2) 

 0,1,2,...;k,βap
P

1
lim k

n

0i

ki,ni

n
n















       (2.3) 

and 

 β.ap
P

1
lim

0k

n

0i

ki,ni

n
n









 


 




        (2.4) 

 

Proof. Sufficiency.  Let (2.1), (2.2), (2.3), (2.4) hold.  For x = {xk}  c, in view of (2.1), 

0,1,2,...n,xa(Ax)
0k

knkn 




 

is defined.  Let B = (bnk), ,ap
P

1
b

n

0i

ki,ni

n

nk 


  n, k = 0, 1, 2, ... .   

Using (2.2), (2.3) and (2.4), B  (c, c) in view of Theorem 1.1. 

Now, 

c,xb
0n0k

knk 
















  
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c,xap
P

1
i.e.,

0n
0k

k

n

0i

ki,ni

n
























 

   

c,xap
P

1
i.e.,

0n

n

0i 0k

kki,ni

n


























   

c,(Ax)p
P

1
i.e.,

0n

n

0i

ini

n














  

  p).(N,(Ax)i.e.,
0nn 




 

Thus A  (c, (N, p)). 

 

Necessity. Let A  (c, (N, p)).  So, for x = {xk}  c, {(Ax)n}  (N, p).   

Retracing the above steps, it is clear that B  (c, c).  Appealing to Theorem 1.1, (2.2), (2.3), (2.4) hold.  

Considering the A-transform of the convergent sequence {1, 1, 1, ...}, we note that 


0k

nka  converges, n = 

0, 1, 2, ... so that (2.1) holds.  This completes the proof of the theorem. 

 

Corollary 2.8: A  (c, (N, p); P), i.e., A  (c, (N, p)) with  

  ,xlim(Ax)p(Ax)p(Ax)p
P

1
lim k

k
0n1n1n0

n
n 




   x = {xk}  c, if and only if (2.1), (2.2), (2.3), 

(2.4) hold with k = 0, k = 0, 1, 2, ... and  = 1. 

 
 We can prove the following theorem on similar lines. 

 

Theorem 2.9: A = (ank)  (ℓ, (N, p)) if and only if (2.1), (2.3) hold and 

 0,)a(apsuplim
1n

0i

ki,nki,1ni
0kn









       (2.5) 

where we define ank = 0 when n < 0 or k < 0. 

 
 We now deduce the following Steinhaus type theorem. 

 

Theorem 2.10: (c, (N, p); P)  (ℓ, (N, p)) = . 
 

Proof. Let A = (ank)  (c, (N, p); P)  (ℓ, (N, p)). 
In view of (2.5), using the fact that |Pn| = |p0|, n = 0, 1, 2, ..., 

 


 

 








0k

n

0i

ki,ni

n

ap
P

1
 converges uniformly in n 

and so 

0,ap
P

1
limap

P

1
lim

0k

n

0i

ki,ni

n
n

0k

n

0i

ki,ni

n
n


















  


 






 




 

which is a contradiction, using Corollary 2.8.  This completes the proof. 
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The proofs of the following theorems are similar. 
 

Theorem 2.11. A = (ank)  (c, (M, )) if and only if (2.1) holds, 

 ;aλsup
n

0i

ki,ni
0kn,







        (2.6) 

 0,1,2,...;k,γaλlim k

n

0i

ki,ni
n















       (2.7) 

and 

 γ.aλlim
0k

n

0i

ki,ni
n









 


 




        (2.8) 

 

Corollary 2.12: A  (c, (M,); P) if and only (2.1), (2.6), (2.7), (2.8) hold with k = 0,  

k = 0 1, 2, ... and  = 1. 
 

Theorem 2.13: A = (ank)  (ℓ, (M,)) if and only if (2.1), (2.7) hold and (2.5) holds with pi replaced by 

i. 
 

Theorem 2.14: (Steinhaus type) (c, (M, ); P)  (ℓ, (M, )) = . 
 

Theorem 2.15: A = (ank)  (c, (E, r)) if and only if (2.1) holds, 

 ;ar)(1rCsup
n

0j

jk

jnj

j

n

0kn,








       (2.9) 

 0,1,2,...;k,δar)(1rClim k

n

0j

jk

jnj

j

n

n





















     (2.10) 

and 

 δ.ar)(1rClim
0k

n

0j

jk

jnj

j

n

n














 



 




     (2.11) 

 

Corollary 2.16: A  (c, (E, r); P) if and only if (2.1), (2.9), (2.10), (2.11) hold with  

k = 0, k = 0, 1, 2, ... and  = 1. 
 

 

 

Theorem 2.17: A = (ank)  (ℓ, (E, r)) if and only if (2.1), (2.10) hold and 

 0.ar)(1rCar)(1rCsuplim
n

0j

jk

jnj

j

n
1n

0j

jk

j1nj

j

1)(n

0kn
 











    (2.12) 

 

Theorem 2.18: (Steinhaus type) (c, (E, r); P)  (ℓ, (E, r)) = . 
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