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ABSTRACT 

A thermo-visco-elastic investigation of an isotropic material in two dimensional systems is presented in this 

work. The problem deals with rheological properties of volume as well as density in the material having 
temperature-dependent mechanical properties with the effect of two-temperature. The generalized heat 

conduction equation due to Lord-Shulman (LS), Green-Lindsay (GL) and classical coupled theory (CD) are 

employed. The expression for stresses, displacement, conductive temperature and thermo-dynamic temperature 

are obtained by means of normal mode analysis and results are presented graphically. 
 

Key Words: Two-Temperature, Thermo-Visco-Elasticity, Rheological Property, Relaxation Function, Normal 

Mode. 

  
INTRODUCTION 

In the theory of thermoelastic diffusion the coupled thermoelastic model is used which implies infinite speeds of 
propagation of thermoelastic waves. Lord and Shulman (1967) obtained a wave-type heat equation by 

constructing a new law of heat conduction to replace the classical Fourier’s law which ensure finite speeds of 

propagation for heat and elastic waves which is known as the first generalization of the coupled thermo-
elasticity theory. The second generalization to the coupled theory of elasticity is known as the theory of thermo-

elasticity with two relaxation times. Green and Lindsay (1972) obtained an explicit version of the constitutive 

equations by incorporating temperature rate term into the constitutive equations. Both the first and second 
generalized theory of thermo-elasticity overcomes the drawback of propagating thermal signal having infinite 

speed. 

Thermo-visco-elastic theory has been applied with great success in the fields of geophysics, plasma physics, 

nuclear device and related topics. Various materials used in engineering applications exhibit visco-elastic 
behavior. Drozdov (1996) derived a constitutive model in thermo-visco-elasticity which accounts for changes in 

elastic moduli and relaxation times. The thermo-visco-elastic problem with composite cylinder under a remote 

uniform heat flow was discussed by Chao et al., (2007). Using generalized theory proposed by Lord-Shulman 
and Green-Lindsay, the problem on visco-elastic materials has been discussed by Mukhopadhyay (1999), 

Rakshit and Mukhopadhyay (2005) and many other authors. Generalized thermo-visco-elastic problem with 

magnetic effect under the consideration of relaxation time has been studied by Othman and Song (2008). 
Acharya and Roy (2009) observed radial vibration of an infinite magnetoviscoelastic medium containing a 

cylindrical cavity. Kar and Kanoria (2009) developed the idea about thermo-visco-elastic stresses in an isotropic 

visco-elastic homogeneous spherical shell. Ezzat et al., (2010) expend their valuable efforts to recognize the 

effects of modified Ohm’s and Fourier’s laws on generalized magneto-thermo-visco-elasticity with relaxation 
volume properties. With the effects of viscous properties in elastic materials Song et al., (2006) use up their 

precious hard work to develop the area. 

At high temperature the mechanical properties of the material are temperature-dependent. Most investigation in 
thermo-visco-elasticity was done by ignoring the temperature-dependent mechanical properties. Thermo-visco-

elasticity including the temperature-dependent mechanical properties increases the field area of elastic theory to 

the research workers. The temperature-dependent properties were proposed by Ferry (1953) in his valuable 

paper. Problem on such consideration was analyzed by Aouadi and El-Karamany (2004) in their paper. The 
study of thermo-visco-elasticity with two-temperature is of interest in some branches of material science, 
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metallurgy, applied mathematics etc. Now a day the effect of two-temperature has become an important area of 
research. According to Gurtin and William (1967) the second law of thermodynamics for continuous bodies may 

involve with twin temperatures. In the theory of thermodynamics the temperature caused by the thermal process 

is known as conductive temperature 𝜑 and the temperature due to mechanical process in the material is known 

as thermodynamic temperature  𝜃. The theory of heat conduction depending on the above two temperatures was 

originated by Chen and Gurtin (1968). Propagation of wave and the propagation of harmonic plane wave in the 

theory of two-temperature thermo-elasticity ware investigated by Warren and Chen (1973), Puri and Jordan 

(2006) respectively. Quintanilla (2004) analyzed the existence, structural stability, convergence and spatial 
behavior for the theory two-temperature thermo-elasticity. By means of two-temperature generalized thermo-

elasticity Youssef and Al-Harby (2007) explained the state-space approach on an infinite body with spherical 

cavity. Ailawilia et al., (2009) investigated the deformation of a rotating generalized thermoelastic medium with 
two temperatures under the influence of gravity subjected to different type of sources. Banik and Kanoria (2011, 

2012) investigated the effects of two-temperature on generalized thermo-elasticity for infinite medium with 

spherical cavity. Mondal and Mukhopadhyay (2013) discussed the effects of rheological volume and density 

properties on their problem having temperature dependent mechanical properties. 
During the last few decades it has been seen that the different kinds of problems related with thermo-elasticity 

involve with two-temperature. In the recent history of thermodynamics a relevant interest on two-temperature 

thermo-elasticity has been found in various papers by research workers. In the present work we concentrate 
upon the analysis of effects of two-temperature in the material having temperature dependent mechanical 

properties on generalized thermo-visco-elastic problem. In the context of LS, GL and CD theories we have 

investigated the stress, conductive temperature, thermodynamic temperature and displacement in an infinite 
isotropic elastic material using the two-temperature generalized thermo-visco-elasticity theory. To guess the 

effects of the temperature discrepancy among the different theories several comparisons has been exposed in 

figures.  
Formulation of the Problem 
We shall assume here a homogeneous isotropic thermally conducting material in a thermo-visco-elastic infinite 

medium. In the context of two-temperature generalized thermo-visco-elasticity the governing equations and the 

constitutive relations for the material in the absence of external forces and heat sources with rheological 
properties of volume as well as density can be taken as: 

 

The equation of motion 

 𝜍𝑖𝑗 ,𝑗

3

𝑗=1

  = 𝜌𝑢 𝑖   .                                                                                                                                    (1) 

The generalized equation of heat conduction 

 𝑘 ∇2𝜑 = 𝐶𝐸  𝑅3 𝑡 − 𝜏 
𝜕

𝜕𝜏
 
𝜕𝜃

𝜕𝜏
+ 𝜏2

𝜕2𝜃

𝜕𝜏2
 𝑑𝜏

𝑡

0

+ 3𝜑0𝛼𝑇 𝑅2 𝑡 − 𝜏 
𝜕

𝜕𝜏
 
𝜕𝑒

𝜕𝜏
+ 𝜏3

𝜕2𝑒

𝜕𝜏2
 𝑑𝜏

𝑡

0

.             (2) 

The constitutive relations 

 

𝑆𝑖𝑗 =  𝑅1 𝑡 − 𝜏 
𝑡

0

𝜕𝑒𝑖𝑗

𝜕𝜏
𝑑𝜏 ,                                                                                                                     (3) 

 𝜍 =  𝑅2 𝑡 − 𝜏 
𝑡

0

𝜕

𝜕𝜏
 𝑒 − 3𝛼𝑇  𝜃 − 𝜑0 + 𝜏1

𝜕𝜃

𝜕𝜏
  𝑑𝜏                                                                         (4) 

where 

   𝑆𝑖𝑗 = 𝜍𝑖𝑗 − 𝜍𝛿𝑖𝑗  ; 𝜀𝑖𝑗 =
1

2
 𝑢𝑖,𝑗 + 𝑢𝑗 ,𝑖  ; 𝑒𝑖𝑗 = 𝜀𝑖𝑗 −

𝑒

3
𝛿𝑖𝑗  ; 𝑒 =  𝑒𝑘𝑘

3

𝑘=1

 ;  𝜍 =
1

3
 𝜍𝑘𝑘

3

𝑘=1

 .  

The conductive temperature 𝜑 is related with the thermo-dynamic temperature 𝜃 as 
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𝜑 − 𝜃 = 𝑎∇2𝜑                                                                                                                                           (5) 

 

where 𝑎 ≥ 0 is the two-temperature parameter (Youssfe, 2006). 

 

Here  𝑢𝑖  are the components of displacement vector; 𝜃 , 𝜑 are the thermo-dynamic temperature and the 

conductive temperature respectively both measured from a constant reference temperature 𝜑0; 𝜍𝑖𝑗  , 𝜀𝑖𝑗   are the 

components of the stress tensor and strain tensor respectively; 𝑒, 𝜌, 𝑘,  𝐶𝐸 ,  𝛼𝑇   are dilatation, density, thermal 

conductivity, specific heat at constant strain, co-efficient of linear thermal expansion; 𝜏1, 𝜏2, 𝜏3  are thermal 

relaxation times; 𝑅1 𝑡 , 𝑅2 𝑡  , 𝑅3 𝑡  are non-negative relaxation function, relaxation function  characterized by 

rheological properties of volume  and density respectively; 𝛿𝑖𝑗  is the Kronecker delta. The comma notations are 

used to present the partial derivatives with respect to the space variables and the over-headed dots denote partial 

derivative with respect to time variable t. Here 𝜏1 = 𝜏2 = 𝜏3 = 0 corresponds to classical coupled theory (CD), 

whereas  𝜏1 = 0, 𝜏2 = 𝜏3 ≠ 0 corresponds to Lord and Shulman (LS) theory and 𝜏3 = 0, 𝜏2 ≠ 0, 𝜏1 ≠ 0 

corresponds to Green and Lindsay (GL) theory.  

 

The relaxation functions are taken in the form (El-Karamany, 1983) 
 

 

𝑅1 𝑡 = 2𝜇  1 −𝑀1  𝑔 𝑡 𝑑𝑡
𝑡

0

 

𝑅2 𝑡 = 𝐾  1 −𝑀2  𝑔 𝑡 𝑑𝑡
𝑡

0

 

𝑅3 𝑡 = 𝜌  1 − 𝑀3  𝑔 𝑡 𝑑𝑡
𝑡

0

 
 
 
 
 

 
 
 

.                                                                                                           (6) 

Here 𝜇 is the lame’ constant; 𝐾 is the bulk modulus. The function 𝑔 𝑡  generally taken in the form  𝑔 𝑡 =

𝑒−𝛽𝑡  𝑡𝛼−1 where 

 

 0 < 𝛼 < 1, 𝛽 > 0, 0 ≤ 𝑀2 ≤ 𝑀3 ≤ 𝑀1 < Γ 𝛼 , 0 ≤ 𝑡 < ∞. 

 

Using equations (3) and (4) we have 
 

𝜍𝑖𝑗 =  𝑅1 𝑡 − 𝜏 
𝑡

0

𝜕𝑒𝑖𝑗

𝜕𝜏
 𝑑𝜏 + 𝛿𝑖𝑗  𝑅2 𝑡 − 𝜏 

𝑡

0

𝜕

𝜕𝜏
 𝑒 − 3𝛼𝑇  𝜃 − 𝜑0 + 𝜏1

𝜕𝜃

𝜕𝜏
  𝑑𝜏.                    (7) 

 

With the help of equation (7) and eliminating 𝜃 between equations (1) and (5) we have 

 

    𝜌𝑢 𝑖 =  𝑅1 𝑡 − 𝜏 
𝑡

0

𝜕

𝜕𝜏
 
∇2𝑢𝑖

2
+
𝑒,𝑖
6
 𝑑𝜏 

+ 𝑅2 𝑡 − 𝜏 
𝑡

0

𝜕

𝜕𝜏
 𝑒,𝑖− 3𝛼𝑇  𝜑 − 𝑎 ∇2𝜑 ,𝑖+ 𝜏1 𝜑 − 𝑎 ∇2𝜑  ,𝑖   𝑑𝜏.                          (8) 

 
In the above we consider the material having temperature dependent mechanical properties which are in the 

form (Lomakin 1976)  𝜇 = 𝜇0𝜓0 𝜃  , 𝐾 = 𝐾0𝜓0 𝜃  , 𝜌 = 𝜌0𝜓1 𝜃  , 𝛼𝑇 = 𝛼𝑇
0𝜓2 𝜃   where 𝜓𝑖 𝜃 = 1 −

𝛼𝑖 𝜃 − 𝑇𝑟  , 𝑖 = 0,1,2 and 𝛼𝑖 > 0, 𝑖 = 0,1 and 𝛼2 < 0 where  𝜇0, 𝐾0 , 𝜌0 and 𝛼𝑇
0   are the Lame

’ 
constant, bulk 

modulus, density and Co-efficient of linear thermal expansion at room temperature  𝑇𝑟 . 
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For simplicity of the problem we introduce the following dimensionless terms and notations: 
 

𝑥𝑖
′ = 𝑐0𝜂0𝑥𝑖  ,   𝑢𝑖

′ = 𝑐0𝜂0𝑢𝑖  ,   𝑡′ = 𝑐𝑜
2𝜂0𝑡 ,   𝜏𝑖

′ = 𝑐𝑜
2𝜂0𝜏𝑖  ,   𝜃′ =

𝛾 𝜃 − 𝜑0 

𝜌0𝑐0
2 ,   𝜑′ =

𝛾 𝜑 − 𝜑0 

𝜌0𝑐0
2 , 

  𝜍𝑖𝑗
′ =

𝜍𝑖𝑗

𝐾0
 ,   𝑅1

′  𝑡 =
2𝑅1 𝑡 

3𝐾0
,   𝑅2

′  𝑡 =
𝑅2 𝑡 

𝐾0
,   𝑅3

′  𝑡 =
𝑅3 𝑡 

𝜌0
,  𝑐0

2 =
𝜆0 + 2𝜇0

𝜌0
,  𝜂0 =

𝜌0𝐶𝐸
𝑘

 . 

 

Using the non-dimensional variables the equations (2) and (4)-(7) after dropping the primes take the form 

 ∇2𝜑 =  𝑅3 𝑡 − 𝜏 
𝜕

𝜕𝜏
  
𝜕

𝜕𝜏
+ 𝜏2

𝜕2

𝜕𝜏2
  𝜑 − 𝑎1∇

2𝜑  𝑑𝜏
𝑡

0

 

+𝜀 𝜓2  𝑅2 𝑡 − 𝜏 
𝜕

𝜕𝜏
 
𝜕𝑒

𝜕𝜏
+ 𝜏3

𝜕2𝑒

𝜕𝜏2
 𝑑𝜏

𝑡

0

,                                                            (9) 

𝜍 =  𝑅2 𝑡 − 𝜏 
𝑡

0

𝜕

𝜕𝜏
 𝑒 − 𝑎2𝜓2   𝜑 + 𝜏1

𝜕𝜑

𝜕𝜏
 − 𝑎1  1 + 𝜏1

𝜕

𝜕𝜏
 ∇2𝜑  𝑑𝜏 ,                                              (10) 

 

𝜑 − 𝜃 = 𝑎1 ∇2𝜑 ,                                                                                                                                                     (11) 

 

 

𝑅1 𝑡 = 𝛽1𝜓0  1 − 𝑀1  𝑔 𝑡 𝑑𝑡
𝑡

0

 

𝑅2 𝑡 = 𝜓0  1 −𝑀2  𝑔 𝑡 𝑑𝑡
𝑡

0

 

𝑅3 𝑡 = 𝜓1  1 − 𝑀3  𝑔 𝑡 𝑑𝑡
𝑡

0

 
 
 
 
 

 
 
 

 ,                                                                                                            (12) 

   𝜍𝑖𝑗 =
3

2
 𝑅1 𝑡 − 𝜏 
𝑡

0

𝜕

𝜕𝜏
 𝜀𝑖𝑗 −

𝑒

3
𝛿𝑖𝑗  𝑑𝜏 

+𝛿𝑖𝑗  𝑅2 𝑡 − 𝜏 
𝑡

0

𝜕

𝜕𝜏
 𝑒 − 𝑎2𝜓2   𝜑 + 𝜏1

𝜕𝜑

𝜕𝜏
 − 𝑎1  1 + 𝜏1

𝜕

𝜕𝜏
 ∇2𝜑  𝑑𝜏                  (13)  

 

Where  

      𝑎1 = 𝑎𝑐0
2 𝜂0

2  , 𝑎2 =
𝜌0𝐶0

2

𝐾0
 , 𝜀 =

3 𝛾𝜑0 𝛼𝑇
0𝐾0

𝑘 𝜌0 𝐶𝑜
2 𝜂0

 ,   𝛽1 =
4𝜇0

3𝐾0
. 

 

We consider the two dimensional problem subjected to the plain strain parallel to 𝑥𝑦-plane and the displacement 

components  𝑢, 𝑣, 0  are the function of the space variables 𝑥, 𝑦 and the time variable t . 
 

Using the non-dimensional terms and ignoring the primes from equation (8) we have 

 
 

 

   𝑎2𝜓1

𝜕2𝑢

𝜕𝑡2
=  𝑅1 𝑡 − 𝜏 

𝑡

0

𝜕

𝜕𝜏
 
𝜕2𝑢

𝜕𝑥2
+

3

4

𝜕2𝑢

𝜕𝑦2
+

1

4

𝜕2𝑣

𝜕𝑥𝜕𝑦
 𝑑𝜏 +  𝑅2 𝑡 − 𝜏 

𝑡

0

𝜕

𝜕𝜏
 
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑥𝜕𝑦
   

 −𝑎2𝜓2   
𝜕𝜑

𝜕𝑥
− 𝑎1

𝜕3𝜑

𝜕𝑥3
− 𝑎1

𝜕3𝜑

𝜕𝑥𝜕𝑦2
 + 𝜏1

𝜕

𝜕𝑥
 
𝜕𝜑

𝜕𝜏
− 𝑎1

𝜕3𝜑

𝜕𝑥2𝜕𝜏
− 𝑎1

𝜕3𝜑

𝜕𝑦2𝜕𝜏
   𝑑𝜏,        (14) 
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   𝑎2𝜓1

𝜕2𝑣

𝜕𝑡2
=  𝑅1 𝑡 − 𝜏 

𝑡

0

𝜕

𝜕𝜏
 
𝜕2𝑣

𝜕𝑦2
+

3

4

𝜕2𝑣

𝜕𝑥2
+

1

4

𝜕2𝑢

𝜕𝑥𝜕𝑦
 𝑑𝜏 +  𝑅2 𝑡 − 𝜏 

𝑡

0

𝜕

𝜕𝜏
 
𝜕2𝑣

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑥𝜕𝑦
  

 −𝑎2𝜓2   
𝜕𝜑

𝜕𝑦
− 𝑎1

𝜕3𝜑

𝜕𝑦3
− 𝑎1

𝜕3𝜑

𝜕𝑥2𝜕𝑦
 + 𝜏1

𝜕

𝜕𝑦
 
𝜕𝜑

𝜕𝜏
− 𝑎1

𝜕3𝜑

𝜕𝑦2𝜕𝜏
− 𝑎1

𝜕3𝜑

𝜕𝑥2𝜕𝜏
   𝑑𝜏 .       (15) 

 

And also we have 

𝑒 =
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
 .                                                                                                                                         (16)  

 
From equations (9) and (13) we have 

   
𝜕2𝜑

𝜕𝑥2
+
𝜕2𝜑

𝜕𝑦2
=  𝑅3 𝑡 − 𝜏 

𝜕

𝜕𝜏
  
𝜕

𝜕𝜏
+ 𝜏2

𝜕2

𝜕𝜏2
  𝜑 − 𝑎1

𝜕2𝜑

𝜕𝑥2
− 𝑎1

𝜕2𝜑

𝜕𝑦2
  𝑑𝜏

𝑡

0

 

+𝜀 𝜓2  𝑅2 𝑡 − 𝜏 
𝜕

𝜕𝜏
 
𝜕𝑒

𝜕𝜏
+ 𝜏3

𝜕2𝑒

𝜕𝜏2
 𝑑𝜏

𝑡

0

,                                                                 (17) 

 

    𝜍𝑥𝑥  , 𝜍𝑦𝑦  , 𝜍𝑧𝑧   =
3

2
 𝑅1 𝑡 − 𝜏 
𝑡

0

𝜕

𝜕𝜏
  
𝜕𝑢

𝜕𝑥
,
𝜕𝑣

𝜕𝑦
 ,0 −

𝑒

3
 𝑑𝜏 

+ 𝑅2 𝑡 − 𝜏 
𝑡

0

𝜕

𝜕𝜏
 𝑒 − 𝑎2𝜓2   𝜑 + 𝜏1

𝜕𝜑

𝜕𝜏
 − 𝑎1  1 + 𝜏1

𝜕

𝜕𝜏
  

𝜕2𝜑

𝜕𝑥2
+
𝜕2𝜑

𝜕𝑦2
   𝑑𝜏 ,            (18) 

 

𝜍𝑥𝑦 =
3

4
 𝑅1 𝑡 − 𝜏 
𝑡

0

𝜕

𝜕𝜏
 
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
 𝑑𝜏.                                                                                              (19) 

 

Solution of the Problem 
A solution of the considered physical variable can be expressed at the form of plane wave in terms of normal 

modes by expressing it in the following exponential form 

 

 𝑒, 𝜃, 𝜑, 𝑢, 𝑣, 𝜍𝑖𝑗   𝑥, 𝑦, 𝑡 =  𝑒∗ 𝑦 , 𝜃∗ 𝑦 ,𝜑∗ 𝑦 , 𝑢∗ 𝑦 , 𝑣∗ 𝑦 , 𝜍𝑖𝑗
∗  𝑦   exp 𝜔𝑡 + 𝕚𝑏𝑥          (20) 

Where  𝜔 is the frequency and 𝑏 is the wave number in 𝑥-direction and 𝕚 =  −1. 
 

Considering any function 𝑓 𝑥, 𝑦, 𝑡  satisfying the condition that the first order or higher order partial derivatives 

with respect to  𝑡 are zero for −∞ < 𝑡 ≤ 0 , we have  
 

 𝑅 𝑡 − 𝜏 
𝑡

0

𝜕

𝜕𝜏
𝑓 𝑥, 𝑦, 𝜏 𝑑𝜏 = 𝜔𝑓∗ 𝑦 𝑅  𝜔  exp 𝜔𝑡 + 𝕚𝑏𝑥                                                          (21) 

Where   

𝑅  𝜔 =  𝑅 𝑡 
∞

0

exp −𝜔𝑡 𝑑𝑡                                                                                                                (22) 

Using equations (20) and (21) we have from equations (14)-(19) 
 

   𝑎2𝜓1𝜔𝑢
∗ = 𝑅 1  

1

4
𝕚𝑏𝑒∗ +

3

4
 𝐷2 − 𝑏2 𝑢∗  

+𝑅 2𝕚𝑏 𝑒
∗ − 𝑎2𝜓2 1 + 𝜏1𝜔  1 − 𝑎1 𝐷

2 − 𝑏2  𝜑∗ ,                                         (23) 

   𝑎2𝜓1𝜔𝑣
∗ = 𝑅 1  

1

4
𝐷𝑒∗ +

3

4
 𝐷2 − 𝑏2 𝑣∗  
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+𝑅 2 𝐷𝑒
∗ − 𝑎2𝜓2 1 + 𝜏1𝜔  1 − 𝑎1 𝐷

2 − 𝑏2  𝐷𝜑∗ ,                                       (24) 

 

𝑒∗ = 𝕚𝑏𝑢∗ + 𝐷𝑣∗,                                                                                                                                                (25) 

 

𝑏1𝜓2𝑒
∗ =  𝐷2 − 𝑏2 𝜑∗ − 𝑏2𝜑

∗,                                                                                                                     (26) 

 𝜍𝑥𝑥
∗  , 𝜍𝑦𝑦

∗  , 𝜍𝑧𝑧
∗  =

3

2
𝜔𝑅 1   𝕚𝑏𝑢

∗  , 𝐷𝑣∗ ,0 −
1

3
𝑒∗ + 𝜍∗,                                                                          (27) 

𝜍𝑥𝑦
∗ =

3

4
𝜔𝑅 1 𝐷𝑢

∗ + 𝕚𝑏𝑣∗                                                                                                                           (28) 

where 

   𝜍∗  = 𝜔𝑅 2 𝑒
∗ − 𝑎2𝜓2 1 + 𝜏1𝜔  1 − 𝑎1 𝐷

2 − 𝑏2  𝜑∗ ,  𝑏1 =
𝜀𝜔2𝑅 2 1 + 𝜏3𝜔 

1 + 𝑎1𝜔2𝑅 3 1 + 𝜏2𝜔 
, 

   𝑏2 =
𝜔2𝑅 3 1 + 𝜏2𝜔 

1 + 𝑎1𝜔2𝑅 3 1 + 𝜏2𝜔 
, 𝐷 ≡

𝑑

𝑑𝑦
 . 

 

With the help of (25) and (26) the combination form of (23) and (24) may be written as 

 

 𝐷2 − 𝜃1 + 𝑏2 𝑒
∗ =

𝑎2𝑏2𝜓2𝑅 2

𝑏3

 1 + 𝜏1𝜔  1 − 𝑎1𝑏2 𝜑
∗                                                            (29) 

where 

   𝜃1 = 𝑏2 + 𝑏2 +
𝑎2𝜔𝜓1

𝑏3
+
𝑎2𝑏1𝜓2

2𝑅 2

𝑏3

 1 + 𝜏1𝜔  1 − 𝑎1𝑏2 , 

𝑏3 = 𝑅 1 + 𝑅 2 + 𝑎1𝑎2𝑏1𝜓2𝑅 2 1 + 𝜏1𝜔 .  
 

Eliminating 𝜑∗ between (26) and (29) we obtain the following forth order ordinary differential equation: 

 

 𝐷2−𝑚1
2  𝐷2−𝑚2

2 𝑒∗ 𝑦 = 0                                                                                                             (30) 
where 

    𝑚1 
2 , 𝑚2 

2  =
1

2
 𝑟1 ± 𝜔1  , 𝜔1 =  𝑟1

2 − 4𝑟2 
1
2   , 𝑟1 = 𝑏2 + 𝜃1 , 𝑟2 = 𝑏2𝜃1 +

𝑎2𝑏2𝜔𝜓1

𝑏3
. 

The solution of the equation (30) may be taken as  

𝑒∗ 𝑦 =  𝑃𝑗  𝑦 

2

𝑗=1

                                                                                                                                  (31) 

Where  

𝑃𝑗  𝑦 =  𝐴𝑗Cosh 𝑚𝑗𝑦 + 𝐴𝑗+2Sinh 𝑚𝑗𝑦   ;   𝑗 = 1,2  and 𝐴𝑘  , 𝑘 = 1,2,3,4 are parameters depending with 

𝑏 and  𝜔. 

 

Putting (31) in equation (29) we have  

𝜑∗ 𝑦 =  𝐹𝑗

2

𝑗=1

. 𝑃𝑗  𝑦                                                                                                                              (32) 

where  

   𝐹𝑗 =
𝑏3

𝑎2𝑏2𝜓2𝑅 2

 𝑚𝑗
2 − 𝜃1 + 𝑏2 

 1 + 𝜏1𝜔  1 − 𝑎1𝑏2 
 ; 𝑗 = 1,2.   

 

Using normal mode from equation (11) we have 
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𝜃∗ 𝑦 =   𝐹𝑗  1 − 𝑎1𝑏2 − 𝑎1𝑏1𝜓2 

2

𝑗=1

. 𝑃𝑗  𝑦                                                                                     (33) 

Two-temperature parameter  𝑎 = 0  implies 𝑎1 = 0 that is for the null temperature discrepancy we observe from 

equations (32) and (33) that the conductive temperature and thermodynamic temperature are identical and the 

problem converted to unique temperature problem.  
 

With the help of equation (26) and substituting 𝑒∗and 𝜑∗  we obtain from equation (23)  

𝑢∗ 𝑦 = 𝑄 𝑦 + 𝕚𝑏 𝐻𝑗  .

2

𝑗=1

𝑃𝑗  𝑦                                                                                                         (34) 

where 

   𝑄 𝑦 = 𝐵1Cosh 𝑚3𝑦 + 𝐵2Sinh 𝑚3𝑦  ,𝑚3
2 = 𝑏2 +

4𝑎2𝜓1𝜔

3𝑅 1
,  𝐻𝑗 =

 𝑇 1𝐹𝑗 − 𝑇 2 

 𝑚𝑗
2 −𝑚3

2 
 ; 𝑗 = 1,2 , 

   𝑇 1 =
4𝑎2𝜓2𝑅 2

3𝑅 1

 1 + 𝜏1𝜔  1 − 𝑎1𝑏2 , 𝑇 2 =
4

3𝑅 1
 𝑅 2 +

1

4
𝑅 1 + 𝑎1𝑎2𝑏1𝜓2

2𝑅 2 1 + 𝜏1𝜔    

and 𝐵1, 𝐵2 are parameter depending with 𝑏 and  𝜔. 

 
Again from (25), (27) and (28) we have 

𝑣∗ 𝑦 =
−𝕚𝑏

𝑚3
2 𝐷𝑄 𝑦 +  

 1 + 𝑏2𝐻𝑗  

𝑚𝑗
2

2

𝑗=1

𝐷𝑃𝑗  𝑦 ,                                                                               (35) 

 𝜍𝑥𝑥
∗  , 𝜍𝑦𝑦

∗  , 𝜍𝑧𝑧
∗   𝑦 =

3𝕚𝑏𝜔

2
𝑅 1 1, −1,0 . 𝑄 𝑦 +   𝐾𝑗 , 𝐿𝑗 , 𝐾𝑗 +

3

2
𝑏2𝜔𝑅 1𝐻𝑗  

2

𝑗=1

. 𝑃𝑗  𝑦 ,            (36) 

𝜍𝑥𝑦
∗  𝑦 =

3𝜔𝑅 1

4

 𝑚3
2 + 𝑏2 

𝑚3
2 𝐷𝑄 𝑦 +

3𝜔𝕚𝑏𝑅 1

4
 

𝑆𝑗

𝑚𝑗
 𝐷𝑃𝑗  𝑦 

2

𝑗=1

                                                     (37) 

where  

   𝐾𝑗 = −
𝜔𝑅 1

2
 1 + 3𝑏2𝐻𝑗  + 𝜔𝑅 2 1 + 𝑎1𝑎2𝑏1𝜓2

2 1 + 𝜏1𝜔 − 𝑎2𝜓2 1 + 𝜏1𝜔  1 − 𝑎1𝑏2 𝐹𝑗   ,  

   𝐿𝑗 = 𝜔𝑅 1  1 +
3

2
𝑏2𝐻𝑗  + 𝜔𝑅 2 1 + 𝑎1𝑎2𝑏1𝜓2

2 1 + 𝜏1𝜔 − 𝑎2𝜓2 1 + 𝜏1𝜔  1 − 𝑎1𝑏2 𝐹𝑗   , 

   𝑆𝑗 =  𝐻𝑗𝑚𝑗 +
 1 + 𝑏2  𝐻𝑗  

𝑚𝑗
  ; 𝑗 = 1,2. 

Boundary Conditions 
We shall consider a homogeneous isotropic thermo-visco-elastic infinite thick flat plate of a finite thickness 2L 

occupying the region R=  𝑥, 𝑦, 𝑧 ;   𝑥 < ∞,  𝑧 < ∞,  𝑦 ≤ 𝐿  where the plane 𝑦 = 0 coincide with the middle 

surface of the plate. The boundary conditions on the surface 𝑦 = ±𝐿 are taken to be 
 

 
𝜑 = 𝜑1 𝑥, 𝑡 

𝜍𝑥𝑦      =      0

   𝜍𝑦𝑦 = 𝜑2 𝑥, 𝑡 
                                                                                                                                       (38) 

 

Where   𝜑1, 𝜑2  are known functions of 𝑥 and 𝑡. On consideration of symmetry with respect to 𝑦-axis we can 

assume 𝐴3 = 𝐴4 = 𝐵2 = 0. 
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With the help of equation (38), from the equations (32), (37) and second of (36) we have 

 𝐹𝑗𝐴𝑗Cosh 𝑚𝑗𝐿 

2

𝑗=1

= 𝜑1
∗ ,                                                                                                                     (39) 

𝕚𝑏 𝑆𝑗𝐴𝑗

2

𝑗=1

Sinh 𝑚𝑗𝐿 +
 𝑚3

2 + 𝑏2 

𝑚3
𝐵1Sinh 𝑚3𝐿 = 0,                                                               (40) 

 𝐿𝑗𝐴𝑗

2

𝑗=1

Cosh 𝑚𝑗𝐿 −
3𝕚𝑏𝜔

2
𝑅 1𝐵1Cosh 𝑚3𝐿 = 𝜑2

∗  .                                                                    (41) 

 

Solving the system of linear equations (39)-(41) for 𝐴1, 𝐴2and 𝐵1 we have 

   𝐴1 =
𝑑1

𝑑
, 𝐴2 =

𝑑2

𝑑
, 𝐵1 =

𝑑3

𝑑
   ;   where 

 

   𝑑 =
 𝑚3

2 + 𝑏2 

𝑚3
Cosh 𝑚1𝐿 Cosh 𝑚2𝐿 Sinh 𝑚3𝐿  𝐹2𝐿1 − 𝐹1𝐿2 

−
3

2
𝑏2𝜔𝑅 1Cosh 𝑚3𝐿  𝐹2𝑆1Cosh 𝑚2𝐿 Sinh 𝑚1𝐿 − 𝐹1𝑆2Cosh 𝑚1𝐿 Sinh 𝑚2𝐿    ,   

   𝑑1 =
3

2
𝑏2𝜔𝑅 1𝜑1

∗𝑆2Cosh 𝑚3𝐿 Sinh 𝑚2𝐿 +
 𝑚3

2 + 𝑏2 

𝑚3
Cosh 𝑚2𝐿 Sinh 𝑚3𝐿  𝐹2𝜑2

∗ − 𝐿2𝜑1
∗ , 

   𝑑2 = − 
3

2
𝑏2𝜔𝑅 1𝜑1

∗𝑆1Cosh 𝑚3𝐿 Sinh 𝑚1𝐿 +
 𝑚3

2 + 𝑏2 

𝑚3
Cosh 𝑚1𝐿 Sinh 𝑚3𝐿  𝐹1𝜑2

∗ − 𝐿1𝜑1
∗  , 

   𝑑3 = −𝕚𝑏 𝑆1Cosh 𝑚2𝐿 Sin 𝑚1𝐿  𝐹2𝜑2
∗ − 𝐿2𝜑1

∗ + 𝑆2Cosh 𝑚1𝐿 Sinh 𝑚2𝐿  𝐿1𝜑1
∗ − 𝐹1𝜑2

∗  . 
 

On the basis of equation (22) the relaxation functions (12) take the form 

   𝑅 1 =
𝛽1𝜓0

𝜔
 1 −𝑀1 

𝜋

𝜔 + 𝛽
 ; 𝑅 2 =

𝜓0

𝜔
 1 −𝑀2 

𝜋

𝜔 + 𝛽
 ; 𝑅 3 =

𝜓1

𝜔
 1 − 𝑀3 

𝜋

𝜔 + 𝛽
 . 

Equations (31)-(37) together with the above derived values of 𝐴1 , 𝐴2 and 𝐵1for distinct cases provide the 
eventual solutions in normal form.  

 

NUMERICAL RESULTS AND DISCUSSION 
To study the behavior of the quantities in details and with the intention of demonstrating the outcomes obtain in 

the above we attempt to achieve the numerical values of the different characteristic parameters of the material. 

For execution of the graphical representation we take for granted the numerical values for a magnesium crystal-

like material as (Ezzat et al., 2010)  
 

   𝜌0 = 1.74 × 103𝑘𝑔 𝑚3 , 𝐶𝐸 = 1020 𝐽 𝐾 𝑘𝑔, 𝑘 = 156𝑊 𝐾 𝑚, 𝜆0 = 3543 × 107𝑁 𝑚2 , 
   𝜇0 = 1518 × 107𝑁 𝑚2 , 𝜆0 + 2𝜇0 = 6579 × 107𝑁 𝑚2 , 𝛼𝑇

0 = 25.2 × 10−6 1 𝐾 ,  
  𝜑0 = 298𝐾,𝐾0 = 4555 × 107𝑁 𝑚2 , 𝛾 =  3𝜆0 + 2𝜇0 𝛼𝑇

0 = 3.444 × 105𝑁 𝑚2 𝐾. 
 

The above considered numerical values imply 𝑎2 = 1.4443, 𝜀 = 0.3027 × 10−3 , 𝛽1 = 0.444346. For 

infinitesimal temperature deviations from reference temperature we can take  𝜓𝑖 𝜑0 = 1 − 𝛼𝑖 𝜑0 − 𝑇𝑟 ; 𝑖 =
0,1,2  such  that  𝛼0 > 0,  𝛼1 > 0 , 𝛼2 < 0 and there after we consider 𝜓0 = 0.82 , 𝜓1 = 0.90 , 𝜓2 = 1.25. For 

the graphical evaluation the other constants in this paper may be taken as 𝛽 = 0.05, 𝛼 =
1

2
, 𝜔 = 4, 𝑏 = 2, 𝐿 =

2,𝑀1 = 0.106, 𝑀2 = 𝑀3 = 0.08.  
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In the figures, comparisons are made between the theory of thermo-visco-elasticity with the presence and 

absence of the two-temperature parameter (temperature discrepancy). We can also compare the graphical results 

in between coupled theory and generalized theory. We moreover draw the graphs considering temperature 
independent mechanical properties (TIMP) and temperature dependent mechanical properties (TDMP).When 

𝜓0 = 𝜓1 = 𝜓2 = 1 our considered problem converted to the same with TIMP. 

Figure1: Conductive temperature distribution  Figure 2: Thermodynamic temperature distribution 

  
             Figure 3: Stress distribution                          Figure 4: Stress distribution 
        
With the purpose of study the effects of two-temperature parameter on displacement, temperature and stress we 

now present our outcomes of the numerical estimation in the structure of graphs. Two distinct values of 𝑎1 are 

specified in all the figures corresponding to two-temperature theory (𝑎1 = 0.075) and unique temperature 

theory (𝑎1 = 0). Figure 1 and figure 2 demonstrate the variation of conductive temperature and thermodynamic 

temperature with respect to the space variable respectively. In both these graphs there is no variation between 

coupled theory and generalized theory. The graphs are shown in view of GL theory and comparison between the 

dashed curve and the solid curve are in favor of TIMP and TDMP respectively. For zero temperature 

discrepancy (𝑎1 = 0) the conductive temperature 𝜑∗ and thermodynamic temperature 𝜃∗ coincide to each other 

and the problem goes for unique temperature model. In the figures 3-7 solid curve, dotted curve and dashed 

curve stand for CD-theory, LS-theory and GL-theory respectively. The thick curves and the thin curves are 
stands for TIMP and TDMP respectively for the figures 3-7.  Here the curves for the stress distributions 

𝜍𝑥𝑥
∗  and 𝜍𝑦𝑦

∗  and the curves for displacement distribution 𝑢∗ are symmetric about the vertical axis where as the  
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                                                      Figure 5: Stress distribution 

 

                             
 

 
Figure 6: Displacement distribution                    Figure 7: Displacement distribution 
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curves for the stress distributions 𝜍𝑥𝑦
∗  and the curves for displacement distribution 𝑣∗ are symmetric about 

origin. So as we plotted only the right hand portion of the vertical axis of the graphs 3-7. Figures 3 and 4 

represent stress distributions 𝜍𝑥𝑥
∗  and 𝜍𝑦𝑦

∗  with respect to space variable, respectively, for coupled theory 

and generalized theory considering 𝑎1 = 0.075 and 𝑎1 = 0. In both the figures 3 and 4 the curves at 

vicinity of the origin have almost the same values for all the above three theories and at a distance from 

the vertical axis the curves produce the notable variations. Figure 5 depict the stress distribution 𝜍𝑥𝑦
∗  for 

the different three theories with the comparison between TIMP and TDMP. Figure 6 exhibits the graph 

corresponding to the displacement field quantity 𝑢∗ where the curves for three distinct theories are 

different in view of two-temperature (𝑎1 = 0.075) and unique temperature (𝑎1 = 0) and have remarkable 

deviation between TIMP and TDMP. It is observed from the figure that the magnitude of the 

displacement for two-temperature model is lesser than that of unique temperature model in favor of all the 

above three theories. Figure 7 shows the displacement distribution 𝑣∗ and evaluations are made for two-

temperature and unique temperature with TIMP and TDMP. It is interesting to note that the amplitudes of 

stress distribution 𝜍𝑥𝑦
∗  and displacement 𝑣∗ vanish at the origin for all models. 

 

Conclusion 
In the context of classical theory and generalized theory the governing equations of thermo-visco-

elasticity with two-temperature have been investigated by means of normal mode analysis with the effect 

of TDMP. The numerical computations of leading equations show the effect of two-temperature and 

TDMP on various theories. It is noticed that for the effect of non-null temperature discrepancy (𝑎1 =
0.075) the curves for stresses and displacements decrease compared with null temperature discrepancy 

(𝑎1 = 0). The analysis indicate that the stress functions are continuous and obey asymptotic nature in the 

neighborhood of the vertical axis  𝑦 = ±2.  
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