
International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online)  

An Online International Journal Available at http://www.cibtech.org/jpms.htm  
2013 Vol. 3 (2) April-June, pp.10-15/ Goswami et al. 

Research Article 

10 
 

SERIES SOLUTION OF A CENTRAL POTENTIAL PROBLEM WITH 

THREE-TERM RECURSION RELATION 
Jishnu Goswami, Chandan Mondal and *Dipankar Charkrabarti

 

Department of Physics, Indian Institute of Technology Kanpur, 

Kanpur-208016, India 

*Author for Correspondence 

 

ABSTRACT 

The series solution of the radial part of the Schrödinger equation for simultaneous coulomb and harmonic 

potential involves three-term recursion relation and is thus difficult to solve for bound states. We have 
suggested a simple method to solve for low lying states. Finite polynomial solutions exist only if the 

coulomb and oscillator potentials are nontrivially related. 
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INTRODUCTION 
In the quantum mechanics text books (Schiff, 1968; Bransden and Joachain, 2000; Zettili, 2009; and 
Griffiths, 2006), the radial part of the Schrödinger equation for a central potential problem is solved by 

Frobenius' method where in general the two-term recursion relation relates one coefficient of the series to 

another one.  Normally one needs to truncate the series to a finite polynomial to have normalizable bound 
state wavefunctions. We also get the energy eigenvalues from the condition of the series truncation. But 

we find very rare comments about the recursion relation involving more than two coefficients as they are 

difficult to solve.  In a popular quantum mechanics book, in the context of hydrogen atom problem, the 

three-term recursion relation has been commented as “enormously more difficult to work with" compared 
to a two-term recursion relation (Griffiths (2006)). We can avoid the three-term recursion relation in 

hydrogen atom by choosing the functional form of the radial wavefunction from its behavior at small and 

large r .  Here we discuss one such interesting example where we cannot avoid a three-term recursion 
relation.  Consider the Schrödinger equation in three dimensions when both coulomb and harmonic 

oscillator potentials are present together, i.e., the potential is given by 

 

                                                       
2 21 1
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2

V r m r
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(Where
2

0/ (4 )e  ò for hydrogen atom problem).The series solution of the radial part for this 

potential involves a three-term recursion relation. For the bound state solution the series needs to be 

truncated to a polynomial. The main difficulty of this problem is that the analytic solution for any 
arbitrary energy level in general form is very difficult to obtain. In Foldy and Stansfield (1987), a similar 

type of problem was addressed with anisotropic harmonic oscillator with frequency ratio of the oscillators 

in different directions chosen in such a way that separation of variables in the parabolic co-ordinates 
works. If one takes isotropic oscillator, then it is not possible to make the separation of variables for all 

three parabolic coordinates. The authors of that paper tried a series solution which again resulted in the 

three-term recursion relation which cannot be solved analytically and they solved numerically in two 
dimensions for a special case when the coulomb term is zero. Hall et al., (2011) solved the isotropic case 

in d-dimensions with more rigorous mathematical approach. They showed that to have polynomial 

solutions, the parameters in the potential need to satisfy specific conditions depending on the order of the 

polynomial. 
In this paper, we have suggested a very simplistic method to obtain the low lying energy eigenvalues 

without much mathematical complications. Converting the recursion relations involving three coefficients 
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to relations involving only two, we can find out the conditions for the series to be terminated to give 
normalizable bound state wavefunctions and the energy eigenvalues. 

The Radial Equation 

We write the Schrödinger equation in spherical polar coordinates. After the separation of variables, the 
angular part of the Schrödinger equation can very easily be solved and can be found in any standard 

quantum mechanics book, the solution is given by the spherical harmonics ( , )lmY   . The radial equation 

is given by, 
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Where l  is the azimuthally quantum number. The effective potential 
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Let us define 
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Then the radial equation (Equation 2) can be written as 
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The asymptotic behavior is determined by 
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The general solution of this equation is given by the parabolic cylinder functions (Abramowitz and 

Stegun (1972)) 1 1/2 1 2 1/2 1( 2   ) ( 2   )C D C D i       (where 1C  and 2C  are constants). With the 

condition that the wavefunction vanishes at infinity, the solution for     goes as 

         
2

1 /2~u e  
 (7) 

Whereas the behavior at small distances ( 0  ) is given by 

 
1~ lu  
 (8) 

So, we assume that the general form of radial wavefunction is given by 

                                                             
2
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With this substitution, Equation (5) becomes 
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Series Solution 
Substituting, 
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In Equation (10) we get 
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The coefficients ic  satisfies the recursion relation  
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Where 11 (2 3)a l      and 
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Looking at the solution for very large i , the approximate behavior of the series solution is given by 

 

 
1

1 1 1

1,3,5... 2,4...

2 1
( ) ~ ( 2 ) ( 2 )

( 1)!! ( 1)!!

i i

o

i i

v c c
i i


    

 

 


 

 
 (15)

 

 Each of the terms in the above expression goes as 
2

1e 
and thus spoils the asymptotic behavior of the 

radial wavefunction ( )u r . So, we need to truncate the series. Note that here the recursion relation 

Equation (13) involves three coefficients 1 1,  , i i ic c c   and the truncation is very tricky.  If we want to 

truncate the series in the conventional way that is if we set the coefficient 1 0nc   , it does not guarantee 

the termination of the series. On top of that, if we set 1 0nc   , then it implies from Equation (13) that  
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 (16)

 

increases as n  increases i.e., the series does not converge which contradicts the original recursion 

relation! In its present form, we cannot set Equation (13) to be zero. 

 

To truncate the series we need the recursion relation with only two coefficients. For this purpose we 

rewrite the first few coefficients in term of the lowest coefficient 0c : 
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 etc. Alternatively, one can write down the coefficient nc   in terms of 1nc   as, 

 

 

0
1 0

2

0 0 1 0
2 1

0

2

1 1 0 2 0 1 0
3 22

0

2( 1)

2( 1)

2(2 3) 2(2 3)

( 2 ) [2(2 3)( 2 ) (2( 1) )]
(18)

3(2 4) (2( 1) )3(2 4)

c c
l

ac c l a
c c

l l

a c c l a l a
c c

l l a l



 



    



 


  
  

 

      
  

   

 

and so on. It is not possible to write down the recursion relation for a general term nc  in these forms, but 

we can write down as many terms as we wish. So, in place of a general solution let us look at the low 

lying solutions. The lowest possible term that can be set to zero is 2c   (this corresponds to 1i   in 

Eq.(13)). If 2 0c   then 3 0c   only if the coefficient of 1c  in the recursion relation for 3c  i.e., 

1( 2 ) 0a     which puts an additional constraint on the energy eigenvalues. The conditions that 2 0c   

is given by 
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The condition that 3c  also be zero is given by 

 

                                                                    12 0a    (21)  

which gives another expression for energy eigenvalue 
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Equation (22) together with Equation (20) gives the condition  
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Thus, the infinite series can be terminated into a finite polynomial only if the parameters in the effective 

potential satisfy a nontrivial condition!  The above results   exactly agree with the results in Hall, Saad, 

and Sen (2011). The minimum value of the ratio   is one thus this method is not applicable with 0  . 

With this condition the energy eigenvalue Equation (20) becomes 
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It is interesting to note that though we have never assumed any particular value for l , the final expression 

for the energy (Eq. (24)) corresponds to 0l   in Equation (20). 

Now, let us set 3 0c   (i.e., 2i   in Equation (13)) with the condition that 14 0a    so that 4c  also 

becomes zero and the series terminates to a second order polynomial.  Then from Equation (17)   we get 
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and the condition on the oscillator frequency and the strength of the coulomb potential  is given by the  
dimensionless ratio  

 

 4 5l    (27) 

in agreement with Hall, Saad, and Sen (2011). With this condition the energy eigenvalue reduces to 
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which again corresponds to 0l   in Equation (26). If we set the coefficient 0nc   then the series 

terminates if the pre-factor of 1nc   in the recursion relation for 1nc   is zero i.e., 1[ 2 ( 1)] 0a n  
.
 This 

gives the energy eigenvalue  

   

                          
3

( ) ,   1,2,3
2

nlE n l n      (29) 

This condition ensures that the ratio 1/n nc c  in Equation (16) is zero and the divergence of the series does 

not arise. As the general condition for 0nc   cannot be written down, we cannot determine the condition 

amongst    ,   and l  for arbitrary n  . 

 

CONCLUSION 
We have proposed a very simplistic method to extract the low lying eigenvalues by truncating a series 

involving three-term recursion relation. We have considered the quantum mechanical problem with both 

harmonic oscillator and coulomb potentials. The series solution of the radial equation results in a 
recursion relation involving three coefficients and is difficult to truncate the series into a polynomial. We 
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have shown that the low lying eigenvalues and eigenfunctions can be obtained by a very simple method 

by writing the coefficient 
nc  in terms of the lowest order coefficient 

0c  or the preceding coefficient 1nc  . 

The series truncation needs an extra condition on the harmonic oscillator frequency and the coulomb 

strength. Depending on the order of the polynomial, the relation between   and   comes out to be 

different, but the dimensionless ratio    always takes only integer values.  The energy eigenvalues can 

be written as purely harmonic oscillator or hydrogenic energy levels. And the eigenvalues then depends 

on  angular momentum  l , on the other hand  the energies can also be written in combination  of both 

harmonic oscillator  and hydrogen atom energies by completely eliminating l  which is exactly same as 

the eigenvalue for 0l   without the additional constraint  between   and  . Using our method we can 

obtain a general expression for the energy eigenvalue for terminating the series at any arbitrary n -th 

order polynomial, but we cannot evaluate the relation between   and   in the general form.  Thus this 

method provides a very simple way to extract the low lying eigenvalues when the recursion relation 

involves more than two coefficients.  
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