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ABSTRACT 

Elastostatic problem of an orthotropic elastic plane containing an infinite row of parallel cracks has been 
considered. After expressing the stress and displacement fields in terms of two holomorphic functions 

defined in appropriate complex domains the problem has been solved by Riemann-Hilbert technique. 

Expressions for local stress fields near the crack tip are determined and graphically displayed for various 

orthotropic materials. 
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INTRODUCTION  

Problems with Griffith cracks were considered by Dhaliwal (1973); Satpathy and Parhi (1978); Piva and 
Viola (1988); Cinar and Erdogan (1983); Lowengrub and Srivastav (1968); De and Patra (1990); Kassir 

and Tse (1983) and others. De and Patra (1993) have solved the problem of propagation of two collinear 

Griffith cracks in an orthotropic strip. Atkinson (1965) studied the steady-state propagation of a semi-

infinite crack in an aeolotropic material by means of the Cauchy integral formula. Piva and Viola (1988) 
applied complex variable approach to solve the elastodynamic crack problems in an orthotropic medium. 

Georgiadis (1986) solved the problem of a cracked orthotropic strip. 

Several authors including Stallybrass (1970) and Rooke and Sneddon (1969) have considered thde 
elastostatic problems involving a cruciform crack and star-shaped crack in an isotropic elastic material. 

They have used Muskhelishvilli-Kolosev potential function, integral transform method and Wiener-Hoff 

technique. Das and Debnath (2000) studied a static cruciform crack problem in an infinite orthotropic 

elastic medium by reducing the problem to the solution of two simultaneous singular integral equations. 
Recently Das and Debnath (2003) studied interaction between Griffith cracks in a sandwiched orthotropic 

layer. The Fourier transform technique is used to reduce the elastostatic problem to a set of integral 

equations which have been solved by using the finite Hilbert transform. 
The elastostatic problem of an orthotropic body having a central inclined crack and subjected to a uniform 

biaxial load at infinity has been studied by Kirilyuk (2005; 2007). Various static problems on crack 

problems are found to be present in the works of Das (2002); Garg et al., (2003); Mukherjee and Das 
(2007); Selim and Ahmed (2006) and Nobile and Carloni (2002; 2004) and many other researchers. 

The present investigation is intended to study the elastostatic problem of an infinite row of parallel cracks 

in an orthotropic medium under general loading. By application of the complex variable theory dealing 

with sectionally holomorphic functions, the problem is reduced to Riemann-Hilbert problem. The 
expressions for quantities of physical interest e.g. stress intensity factor (S.I.F.), the local stress field near 

crack tip have been derived. Numerical results for different orthotropic materials have been displayed in 

the form of graphs. 
 

THE BASIC EQUATIONS 

Consider an infinite orthotropic elastic medium parallel to xy-plane. The displacement component along 
the z axis and all its derivatives with respect to z are assumed to be zero. The stress displacements 

relations are given by  
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The equilibrium equations in terms of displacement components for elastostatic problem are  
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where ijC  (i,j=1,2,3) are elastic constants, ),( yxuu  , ),( yxvv   are displacements in x, y directions.  

The system of equations (4) may be rewritten as  
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in which I  is the 44 identity matrix and  
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Eigenvalues of the matrix A can be obtained from the equation 
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where 111 42  a , and 12 a  .     … (9) 

Two types of orthotropic materials can be defined: (i) Type I: when 21 aa  and (ii) Type II: 

when 21 aa  ; based on the existence of the real part of the solution. 

The Case of Type I Orthotropic material 

The roots of the equation (8) will be purely imaginary, if 212 ,0 aaa       … (10) 

The two eigenvalues can be taken as ipm 1 and iqm 2     … (11) 

where   2121

2
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We now consider the transformation ),(),( yxUyx  ,  
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The stress components can be expressed in terms of two analytic functions    2,1,  jz jj  as follows: 
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The corresponding displacement components are  
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The Case of Type II Orthotropic material 

When the elastic properties of the orthotropic material are such that  
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The roots of the equation (8) are complex. 

The eigen values can be taken as,  
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Following Piva and Voila (1988), the basic complex variables can be written as, 
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The stress components can be written as, 
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The displacement components are given by 
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BOUNDARY CONDITIONS 

Lest us consider an infinite row of parallel cracks, at a distance of period 2 , having a constant 

length a2 , along the y axis, with uniform function )(0 xfp applied to its edges, in an elastic medium so 

that the boundary conditions of the problem are 
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Figure 1: An infinite row of parallel cracks, at a distance of period 2 , having a constant length a2 , 

along the y axis 

 

SOLUTION OF THE PROBLEM 

Case I: Type I material 
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The stress components can be written as, 
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where )( jj z is a periodic function of period 2 . 

Since the stress distribution is identical in the strips ,...2,1,0,)1(22  nnyn   the stress field 

should be periodic function of period i2  . 
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Following the approach of Gakov (1966) to solve this Riemann boundary value problem we set   

  
dt

zt

ttF
z

a

j

jj  


0
coshcosh

sinh)(
)(

,       which is singular on L , where y = 0 …(48) 

Applying the Sokhotski’s formula we obtain,  

dt
zt

ttF
ziFz

a

j

jjj  


0
coshcosh

sinh)(
)()( 

     and       
dt

zt

ttF
ziFz

a

j

jjj  


0
coshcosh

sinh)(
)()( 

 

From (46) and above Sokhotski’s formula, we have  

66

0

0

)(

coshcosh

sinh)(

C

xfp
dt

zt

ttF
a

j




 

Using Finite Hilbert transform and the Airfoil equation, the unknown )(tF is calculated. 
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Particular case 
When f(x) =1, the solution of the Riemann boundary value problem defined by (44) and (45) is given by 
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The stress components may be rewritten as 
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It can also be shown from (17) and (18) that 
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The local stress and displacement fields: It is well known that the crack features are controlled by the 

local stress field. Introducing polar coordinates ),( jjr  , the local stress fields are given by  
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where 
(1)

xx denotes the singular part of stress and 
(0)

xx denotes the non-singular part of stress and similarly 

for other stress fields. 
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The circumferential stress distribution is given by  
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The stress intensity factor near the crack tip (x = a) is given by the relation  
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Case II: Type II material 
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where 54631 kkkk  and following the same approach as that of Type I material, for f(x) =1, the 

stress components can be written as, 
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The displacements fields are  
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The local stress and displacement fields: The local stress fields are given by   
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The circumferential stress distribution is given by  
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The stress intensity factor near the crack tip (x = a) is given by the relation  
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NUMERICAL RESULTS AND DISCUSSIONS 

Numerical results for singular terms of stress field near the crack tip for different orthotropic materials in 
case of Type I orthotropic material have been considered. The values of the elastic constants have been 

taken from the paper of Kassir and Tse (1983) and Garg (1981). All units are in the order of 

10
12

dyns/cm
2
. 

 

Table 1: The values of the elastic constants for different orthotropic materials 

Materials C11 C22 C12 C66 

Pinewood 0.0983 0.00413 0.000983 0.00736 
Beryllium 3.148 3.649 0.888 1.124 

Steel-Mylar 1.87 0.292 0.13 0.062 

Beechwood 0.017 0.158 0.015 0.0103 

Magnesium 0.575 0.601 0.195 0.167 

 

In Fig. 2 - Fig. 4, variation of the singular terms of the stress components
)1(

xx  ,
)1(

yy , and 
)1(

xy  with 

different angular positions near crack tip are displayed for the above mentioned materials. 

In Fig.5, variation of singular term of the circumferential stress with different angular positions near the 

crack tip is presented.  
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Fig. 6 shows the comparison of singular and non singular terms of the stress component xx . Natures of 

curves for the above mentioned materials are the same with a linear shifting for the different stress 

components.  

 

 

Figure 2: Plot of 
 1

xx  against angle (degree) 

 

 

Figure 3: Plot of 
 1

yy  against angle (degree) 
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Figure 4: Plot of 
 1

xy  against angle (degree) 

 

 

Figure 5: Plot of circumferential stress 
 1

  against angle (degree) 
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Figure 6: Comparison between non singular and singular terms of the stress component xx  

  

Conclusions 
The outcomes of the present investigations may be summarized as investigation of elastostatic problem of 

an infinite row of parallel cracks in an orthotropic medium under general loading. The problem is reduced 

to Riemann-Hilbert problem with the help of the complex variable theory dealing with sectionally 
holomorphic functions. The expressions for quantities of physical interest e.g. stress intensity factor 

(S.I.F.), the local stress field near crack tip, have been completely and thoroughly investigated.Results for 

singular terms of stress field near the crack tip for different orthotropic materials in case of Type I 
orthotropic material have been displayed in the form of graphs. It becomes plausible that similar problems 

in general anisotropic material may be caried out with similar techniques.   
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