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ABSTRACT 

The integrated vendor – buyer production inventory models are gaining much significance in recent 
times. Several methods such as classical differential calculus, cost difference rate comparison approach 

are employed to determine the optimal lot size with the assumption that the demand and the costs 

involved are deterministic in nature, which is not possible in this world of uncertainity. This leads to the 
transformation of deterministic parameters to fuzzy parameters. In this paper the demand and the 

associated costs are taken as fuzzy variables. To determine the optimal inventory policies the Yager’s 

ranking methods for fuzzy numbers is utilized. A set of numerical data is employed to analyse the 

characteristics of the proposed model. 
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INTRODUCTION 

In the past decades the inventory models were devised for vendor and the buyer separately, but during the 

last few years the concept of integrated vendor buyer inventory model has earned favour of the top 
management of the business concern as it minimize the total costs. As co-operation, the main backbone of 

the successful functioning of the production sector, the phenomena of integrated vendor-buyer inventory 

model has great welcome among the enterprise manager.The researchers who have wide range of interest 

in integrated models to determine the optimal order quantity. A brief literature review of their 
contributions is given by Chun-Jen Chung. To mention a few Yang et al., (2007); Minner (2007) and 

Teng (2009). To these integrated models the concept of backordering is merged to have better cost control 

of the inventory system. One common point that has to be noted in all the earlier models is that the nature 
of demand and the cost are deterministic which is quite impossible at all times. The reasons for the cause 

of such situations are inflation, sudden rise and fall in the economy of the mighty nations and so on. The 

effects are, the fluctuations of demand and costs which pave way for fuzzy parameters. 

In accordance to it integrated inventory problems are addressed under fuzzy environment to determine the 
optimal order quantity. For instance Park (1987) discusses the EOQ model with fuzzy cost coefficients. 

Ishii and Kunno (1998), Petrovic et al., (1996) and Kao and Hsu (2002) investigate the newsboy 

inventory model with fuzzy cost coefficients and demands respectively. Roy and Maiti (1997), Chang 
(2009) construct a fuzzy EOQ model with fuzzy defective rate and fuzzy demand. Most of the paper 

directly supposes the model parameters as a triangular fuzzy number and then finds their optimal 

solutions. Yao and Chiang (2003); Lee and Yao (1998) and Chang and Yao (1998) develop the EOQ 
model with fuzzy ordering quantities. In this paper a fuzzy integrated vendor buyer production model is 

discussed. 

The structure of this paper is organized as follows. In section 2, the preliminaries are given. In Section 3, 

the total inventory cost of the integrated problem under deterministic nature is discussed. In Section 4, 
fuzzy optimal ordering quantity is determined using Yager’s ranking (1981) method. Finally the 

characteristics of proposed models will be illustrated and some conclusions will be made.  
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PRELIMINARIES  

Definition: Fuzzy Set 

A fuzzy set A  is defined by A  = {(x, 
A

μ (x) ) : x  X, 
A

μ (x)   [0, 1]}. In the pair {(x, 
A

μ (x) )}, the 

first element x belong to the classical set A, the second element 
A

μ (x) , belong to the interval [0, 1], 

called membership function or grade of membership. The membership function is also a degree of 

compatibility or a degree of truth of x in A . 

α - Cut 

The set of elements that belong to the fuzzy set A at least to the degree  is called the  α level set or α - 

cut. A(α) = {x  X : 
A

μ (x)   α 

Generalized Fuzzy Number 

Any fuzzy subset of the real line R, whose membership function satisfies the  following conditions, is a 

generalized fuzzy number 

(i) A
μ (x)  is a continuous mapping from R to the closed interval [0, 1]. 

(ii) A
μ (x)  = 0, - < x  a1, 

(iii) A
μ (x)  = L(x) is strictly increasing on [a1, a2], 

(iv) A
μ (x)  = 1, a2  x  a3, 

(v) A
μ (x)  = R(x) is strictly decreasing on [a3, a4], 

(vi) A
μ (x)  = 0, a4  x < , 

where a1, a2, a3 and a4 are real numbers. 

Triangular Fuzzy Number 

The fuzzy set 
1 2 3A = (a , a , a )  where a1  a2   a3 and defined on R, is called the triangular fuzzy number, if 

the membership function of A is given by (Q, r) Inventory Model with Fuzzy Lead Time  

A
μ (x)   =   

1
1 2

2 1

1
2 3

3 2

x - a
,     a   x   a

a  - a

a  - x
,     a   x   a

a  - a

0,               Otherwise


 




 





     

Yagers’ Ranking Method 

If the  cut of any fuzzy number A  is  [AL(),  Ag()]then its ranking index I( A ) is 
1

L g

0

1
A (α) + A (α)  dα.

2
  

 
 

THE DETERMINISTIC INTEGRATED VENDOR BUYER INVENTORY MODEL  

The assumptions and the notations of the model are as follows. 

Assumptions 

The algebraic model for the integrated two-stage vendor–buyer inventory model is developed on the basis 
of the following assumptions. 
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(a) Both the production and demand rates are constant and the production rate is greater than the demand 

rate. 

(b) The integrated system of single-vendor and single-buyer is considered. 

(c) The vendor and the buyer have complete knowledge of each other’s information. 
(d) The buyer’s shortage is allowed. 

Notations 

Q = Buyer’s lot size per delivery. 
n = Number of deliveries from the vendor to the buyer per vendor’s replenishment interval. 

nQ = Vendor’s lot size per delivery. 

S = Vendor’s setup cost per setup. 
A = Buyer’s ordering cost per order. 

Cv = Vendor’s unit production cost. 

Cb = Unit purchase cost paid by the buyer. 

πb = Unit backordering cost of the buyer. 
r = Annual inventory carrying cost per dollar invested in stocks. 

P = Production rate per year, where P > D. 

D = Demand rate per year. 
K = The backordering ratio. 

(1 − K) = The non-backordering ratio. 

TC(Q) = The average integrated total cost of the vendor–buyer inventory model considering 
backordering. 

The total integrated cost is  

TC (Q) = {the vendor’s setup cost + carrying cost} + {the buyer’s ordering cost + carrying cost}+{the 

buyer’s backordering cost} 
 

The total integrated cost is  

TC(Q) = {the vendor’s setup cost + carrying cost} + {the buyer’s ordering cost + carrying cost} + {the 
buyer’s backordering cost} 

= 

2 2

v B bDS rQC D P DA r(1 - F) QC F Qπ
 + (n - 1) 1 -  +  + + 

nQ 2 P P Q 2 2

       
       

       
 

 TC(Q)

 Q




=

2 2

v B b

2 2

- DS rC D D DA r(1 - F) QC F Qπ
 + (n - 1) 1 -  + 

nQ 2 P P Q 2 2

  
    

  
 

 TC(Q)

 Q




 =  0 

Q  =  

2 2

B b

2D(S + nA)

D D
n rCr (n - 1) 1 -  + r(1 - F) C +F π

P P

   
   

   

 

(or) TC(Q) can be written as  

TC(Q) = v vDS (n - 1)rQC D (2 - n)rQC
 +  +  

nQ 2 P 2
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2 2

b bDA r(1 - F) QC F Qπ
+ + 

Q 2 2
  

 
 TC(Q)

 Q




 = 

2 2

v v b b2

1 DS 1
+DA + D(2 - n)rC +P[(n-1)rC +r(1 - F) C +F π

Q nQ 2P

 
    

 
 

Q  =  
2 2

v v b b

2PD(S + nA)

D(2 - n)rC  + P((n - 1)rC  + r(1 - F) C  + F π  

 

 

FUZZY INTEGRATED VENDOR-BUYER INVENTORY MODEL 

Let 
v b vD,  S,  C ,  C ,  π ,  A      be fuzzy trapezoidal numbers and they are defined as follows. [ie. they 

are described by the -cuts] 

D(D)  = 
-1 -1

D D D DL (α ),  R (α )    

S(S)  = 
-1 -1

S S S SL (α ),  R (α )    

Cv(Cv)= 
v

-1 -1

v v C vLC (αC ),  R (αC ) 
   

Cb(Cb)= 
b

-1 -1

b b π bLπ (απ ),  R (απ ) 
   

A(A)  = 
-1 -1

A A A AL (α ),  R (α )    

r(r)  = 
-1 -1

r r r rL (α ),  R (α )    

TC(Q) can be rewritten as  

TC(Q)  =  
v vDS rQC D rQC

 + (n - 1)  + (2 n)  
nQ 2 P 2

 
 

 
 

2 2

b bDA r(1 - F) QC F Qπ
+ + 

Q 2 2
  

K1(D, D)  = 

1 1 1 1

-1 -1 -1 -1

D D D S S S S S S S S S

0 0 0 0

1
L (α )dL  . L (α )dα  + L (α )dα  . R (α )dα

4

 
 
 
     

K2(v, v)  = 

1 1 1

-1 -1 -1 -1

v v v v r r r r r r r

0 0 0

1
LC (αC ) + RC (αC )dα  . L (α )dα  . R (α )dα

4     

K3(, Cv)=

1 1 1 1

-1 -1 -1 -1

D D D r r r D D D v v v

0 0 0 0

1
L (α )dL . LC (αC )dα + R (α )dα . RC (α )dαC

4

 
 
 
     

K4(, A) =

1 1 1 1

-1 -1 -1 -1

D D D A A A D D D A A A

0 0 0 0

1
L (α )dL . L (α )dα + R (α )dα . R (α )dαC

4

 
 
 
     
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K5(r, Cb) =

1 1 1

-1 -1 -1 -1

b b b b b r r r r r r

0 0 0

1
LC (αC ) + RC (αC ) dαC  . L (α )dα  . R (α )dα

4
      

K6(b) =

1

-1 -1

b b b b π

0

1
Lπ (απ ) + Rπ (απ ) dα

2
    

TC(Q)  =  
 1 D S r 2 r 3 D v

K α ,  α (n - 1)rC K (αC ) rQ(2 - n)K (α , αC )
 +  + 

nQ 2 2P
 

 

2 2

4 D A 5 b 6 rK (α , α ) r(1 - F) QK (αC ) F K (απb)C
 +  +  + 

Cr 2 2
 

To determine the optimal order quantity 

 TC(Q)

 Q




 = 

   1 D S 4 D A 2 v

2

K α ,  α K α ,  α (n - 1)rK (αC )
 +  

Q 2

   
 

2 2

3 D v 5 b 6r(2 - n)K (α , αC ) r(1 - F) K (αC ) K (απb)F
+  +  + 

2P 2 2
 

 TC(Q)

 Q




 = 0 

 Q = 

   

      
1 D S 4 D A

2 2

2 3 D 5 h 5 b

2P K α ,  α K α ,  α

P((n - 1)K α(r) + r(2 - n)K α ,α(v) P r(1 - F) K αC  + K απ F

  

   
 

 

NUMERICAL EXAMPLE 

To validate the proposed model consider the data 

D = (560, 580, 620, 640) r  =  (8, 9, 11, 12) 

S = (80, 90, 110, 120)  n = .1 
Cv = (3, 4, 6, 7)   F = 10% 

Cb = (2, 3, 5, 6) 

b = (2, 3, 5, 6) 
A = (90, 100, 120, 130) 

P = 700 
 

D(D)  = (560 + 20, 640 - 20)  

S(S)  = (80 + 10, 120 - 10)   

Cv(Cv
) = (3 + , 7 - )    

Cb(Cb
) = (2 + , 6 - ) 

b(b
) = (2 + , 6 - ) 

A(A)  = (90 + 10, 130 - 10) 

P(r)  = (8 + , 12 - )  P   = 700 
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K1(, s)   

= 

1 1 1 1

0 0 0 0

1
560+20α dα . 80 10α dα + 640-20α dα . 120-10α dα

4

 
 

 
   

 

= 

1 1 1 1
2 2 2 2

0 0 0 0

1 20α 10α 20α 10α
560α+ . 80α+ + 640α-  . 120α-

4 2 2 2 2

         
        
           

=         
1

560 10 80 5 640 10 120 5
4

      

 

=      
1

570.85 630 115
4



 

=  
1

48450 72450
4



 K1(, s)  = 30225  
 

K2(r, Cv
)   

=  

1 1 1 1

0 0 0 0

1
(8+α) dα . (3 α) dα + (12-α) dα . (7-α) dα

4

 
 

 
   

 

=  
1 1 1 1 1

8 + . 3 +  + 8 - 7 - 
4 2 2 2 2

       
       
       

 

=          
1

8.5 3.5 11.5 6.5
4

  

 

=   
1

29.75 74.75
4



 =  26.125 
 

K3(, r, Cv
)   

=  
1 20 1 20 1 1

560 + . 3 +  + 640 - 8 + 7 - 
8 2 2 2 2 2

        
        
        

 

=   
1

(570)(3.5) + (630)(6.5)
8

 
=  8006.25 
 

K4(, A)   

=       
1

560 + 10 90 + 5  + 640 - 10 13 - 5
4
  
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=   
1

(570)(95) + (630)(125)
4

 =  33225 

 

K5(r, C5
)   

=       
1

8 + 0.5 2 + 0.5  + 12 - 0.5 6 - 0.5
4
  

 

=   
1

(8.5)(2.5) + (11.5)(5.5)
4

 =  21.125 

K6(b)   

=     
1

2 + 0.5 6 - 0.5
2

  
 

=  
2.5 5.5

 = 4
2



  

Q   = 
2  700[30225 + 33225]

8006.25  700 [(0.81)(21.125) + 0.01  4]



 
 

 

Q   = 66.18 
 

CONCLUSION 

The purpose of this paper is to study the integrated models under fuzzy environment. This fuzzy model 
assists in determining the optimal order quantity amidst the existing fluctuations. This model benefits the 

enterprise manager in decision making. In this paper the yager ranking method is employed as this does 

not require the explicit form of the membership function. 
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