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ABSTRACT
Chugh and Rathi (Chugh and Rathi, 2005) introduced the concept of Fuzzy normed space The aim of this
paper is to prove a common fixed point theorem for a pair of operators in fuzzy normed space.
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INTRODUCTION

In 1942, K. Menger introduced the notion of PM-space by generalizing the concept of metric space to the
situation when we do not know the distance between the points. It is suitable to look upon the distance
concept as a statistical or probabilistic rather than deterministic one, because the advantage of a
probabilistic approach is that it permits from the initial formulation a greater flexibility rather than that
offered by a deterministic approach.

The idea thus appears that, instead of a single positive number, we should associate a distribution function
with the point pairs. Thus, for any p, g elements in the space, we have a distribution function F(p, q; X)
and interpret F(p, g; x) as the probability that distance between p and q is less than x.

In 1963, Serstnev generalized the concept of ordinary normed space to random normed space. In fact, a
random normed space is a menger space if we set Gxy = F,, . Fixed point theorems for contraction
mappings in RN-spaces were first investigated by Boscan (1974). Thus many fixed point theorems for
metric space have an immediate analogue in Random normed spaces. For topological preliminaries in
RN — spaces, Schweizer and Sklar (1983) and Serstnev (1963) are excellent readings.

Zadeh, 1965 introduced the concept of fuzzy set. Since then, a lot of work has been developed by many
authors regarding the theory of fuzzy sets and applications. Especially, Erceg, (1979); Kaleva and
Sekkala (1984); Kramosil and Michalek (1975) have introduced the concept of fuzzy metric space in
different ways. Grabiec, 1983 followed Kramosil and Michalek (1975) and obtained the fuzzy version of
Banach contraction principle. Grabiec (1983) results were further generalized by Subrahmanyam, 1995
for a pair of commuting mappings. Moreover, George and Veeramani (1994) modified the concept of
fuzzy metric space, introduced by Kramosil and Michalek (1975) and introduced the concept of
Hausdorff topology on fuzzy metric spaces and showed that every metric induces a fuzzy metric. Chugh
and Rathi (2005) introduced the concept of Fuzzy normed spaces. In this paper, we prove a common fixed
point theorem for a pair of operators in fuzzy normed space.

A fuzzy normed space is a fuzzy metric space if G(x, y, t) = M(x-y, 1).

Definition 1.1 A fuzzy set A in X is a function with domain X and values in [0, 1].

Definition 1.2 A binary operation * : [0, 1] x [0, 1] — [0, 1] is a continuous t-norm if * satisfies the
following conditions :

1. * js associative and commutative,

2. * is continuous,

3. a*1= aforalla € [0, 1],

4, a*b<c*dwhenevera<candb<d, (a, b,c,de[0,1]).

Example 1.1 a*b = ab, a *b = min {a, b}.

Definition 1.3 A triplet (X, M, *) is called a fuzzy normed space (briefly FN — space) if X is a real vector
space, * is a continuous t-norm and M is a fuzzy set on X x [0, o) satisfying the following conditions
(FN-1) M(x, 0) = 0,

(FN-2) M(x,t)=1forallt>0 ifandonlyifx=0,
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(FN-3) M(ax, t) = M(X, ﬁ) foralla e R, a=0,
(00

(FN-4) M(x +y, t+s) >M(x, t) * M(y, s) for all x, y € Xand t, se R+
(FN-5) M(x, .) : [0, o) — [0, 1] is left continuous for all x € X
(FN-6) lim M(x,t)= 1forallxinXandt e R+.

t—>o0

A fuzzy normed space is a fuzzy metric space if we set G(x, y, t) = M(x -y, t).
Remark 1 M(x, t) can be thought of as the degree of nearness of norm of x with respect to t.
Definition 1.4 The natural topology t(M) is said to be topological if for each x in X and any € >0
Uu(€) = {y : M(X-y, €) > 1-€ }is a neighbourhood of x in t(M).

Definition 1.5 A sequence {X»} in a fuzzy normed space is said to be convergent if for eachr, 0 <r <1,
and t > 0, there exists ny € N such that

M(X,—x, t) > 1-r foralln>ny.
Definition 1.6 A sequence {X,} in a fuzzy normed space is said to be a Cauchy if for eachr, 0 <r <1 and
t > 0, there exists ng € N such that

M(Xp— Xm, t) > 1—r foralln,m=>ny.
Definition 1.7 A fuzzy normed space is said to be complete if every Cauchy sequence is convergent.

-1
X
| lﬂ forall x e Xandt € [0, «).

Example 1.2 Let X = R. Definea * b = ab and M(x, t) = {exp[T

Then (X, M, *) is a fuzzy normed space.
Proof (i) M(x,0) =0

-1
(i) M(x, t)=1 implies {exp(?ﬂ =1
(MJ .
or exp T =1

or exp (%} = exp(0)
(lej )
or — | =0
t
= X|=0 = x=0.

If x =0, then M(x, t) = 1.
t

(iii) M(ax, t) = M(X, ﬁ ) is obvious
a

(iv) To prove
M(x+y, t+s) = M(X, t) * M(y, s)

Ix+yl Ix|+]yl
<

Since <
t+s t+s
x Tyl
t+s t+s
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x| 1yl
< —4+—
t S
| X+y| |x| Tyl
exp <exp| —+—
t+s t

< o»m

5

Taking inverse, we have

{ (|X+y|ﬂl { (|X|ﬂl { (|y|ﬂl
exp > exp|l — || .| exp| —

t+s t S
Hence M(x+y, t+s) > M(X, t) * M(y, s)

(V) M(x, .) : [0, ) — [0, 1] is left continuous
(vi) tIim M(xt) =1

U) ‘

Hence (X, M, *) is a fuzzy normed space.

. t
Example 1.3: Let M be a fuzzy set on X x [0, «) defined by M(x, t) = " | for all xeX t>0
+| x

and * is a t-norm defined by a*b = ab. Then (X, M, *) is a fuzzy normed space.

Throughout this paper, we refer to X as a complete fuzzy normed space and Y a complete fuzzy
normed space consisting of all continuous functions f from a finite closed interval I to X such that

M(f, X)y = iknf M(f(K), X)x, for every fin Y.
el

Here M(f, x)y and M(f, xX)x stand for the degree of nearness of norm of f w.r.t. x in Y and X
respectively. Moreover, the t-norm * in both X and Y is supposed to satisfy *(X, y) = min(x, y), X,
y € [0, 1].

Definition (1.8): Let P be an operator from Y to X. An element f € Y is said to be a fixed point of P if
Pf = f(k) for some k in I.
Lemma 1.1: Let f, be a sequence in Y, * is continuous t-norm and satisfies *(t, t) > t for every t € [0, 1].
If there exists a constant q € (0, 1) such that
M(fn — fos1, Ob)y >M(fo-1— o, D)y (L1
for all n, then {y,} is a Cauchy sequence.
Proof: Let €, r be positive reals. Then for m > n we have by (FN — 4),
M(fn - fm, G)Y > M(fn - fn+1, € — qE)Y * M(fn+1 - fm, qE)Y
> M(fo - f1, (e =€) g ")y * M(fre1 — T, g€)v, by (1.1)
Taking (e — qe)q™" = h, we get
M(fo = fm €)= M(fo— 1, h)y * (M(foer = frvz, g€ — GP€)y * M(friz = fn, 07€) v)
> M(fo — f1, )y * (M(fo — f1, h)y * M(foi2 — fin, G7€)v)
Since t-norm is associative and *(t, t) > t, we have
M(f, — fm, €)v > M(fo — fi, h)y * M(frez — fm, 4°€)y
Repeating these arguments
M(fn — fm, €)v > M(fo — 3, h)y * M(fiy — fin, qun—l €)v
>M(fo—f, h)y *M(fo—fi, g €)y
> M(fo — f1, h)y * M(fo — f, h)y
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> M(fo - f1, (€ —qe)q ")y
Therefore, if N be so chosen that M(f, — f, (€ —qe) ) > 1 —r, it follows that
M(f,—fn, €) >1-rforallm>n>N.
Hence {y,} is a Cauchy sequence.
Main Theorem
Theorem: Let P, Q be the operators from Y to X satisfying
1) M(Pf-Qg, (ax))x = min {M(f - g, X)v, M(f(K) — Pf, X)x, M(g(k) — Pf, 2X)x,
M(f(k) — Qg, 2x)x}
forallf,g e Y,x>0,q9 (0, 1)andk € I. Then
(A) Given fy € Y, every sequence {f,} satisfying
Pfon = fonea(K), Qfzner = fonsa(k), N=0,1,2 ...
and M(foer — o, X)y = M(frea(k) — fo(K), X)x
converges to a common fixed point f* of P and Q.
2 Let {f.} and {g.} be the sequences of iterates of fy, go € Y constructed as in (A). If
S ={feY:M(, x)y =M (f(K), X)x}
and f, — g, € S for every n, then
(B) limf,=1lim g,
3) if f* is a common fixed point of P and Q and
S ={feY:M(f-f* X)y =M (f (K) — f*(k), X) x,
Then
© f* is the unique common fixed point of P and Q in S¢*.
Proof: for f, € Y, constructing {f,} as in (A) and using (1)
M (Fons1 — fonsz, OX)y = M(fonea(K) — fans2(K), GX)x
=M (Pfan — Qfzq41, OX)x
> min {M(fzn — f2ns1, X)v, M(fan(K) — f2nsa(K), X)x,

M (fane1(K) = fonva(K), X) x, M (fanis (K) = f2nea(K), 2X) x,

M (fan(K) — Fans2(K), 2X)x
Since M(f2n — fonsz, 2X) > min {M(fan — fone1, X), M(fone1 — fonsz, X)},
and M(fon — fons, X)y 2 Ii<nf M(f2n(K) — fan+1(K), X)x, We get
el

M(f2n+1 - f2n+2a qX)Y 2 M(on - f2n+1a X)Y
Similarly,
M(fonsz2 = fonsa, OX)y = M(Fone1 — fonez, X)y
Thus, in general
4) M(f, = foe, X))y 2 M(frg =T, X))y, n=1,2,3, ...
Therefore {f.} is a Cauchy sequence (By lemma 1.1) converging to some f*in Y.

Let Ups (€, 1) be a neighbourhood of Pf*. Since f, — f*, for €, r > 0, there exists N(e, r) such

that n > N implies
®) M(f* — fanez, (1 — @) €/20)y > 1 -2
and M(fane1 — fonsez, (1 =) €/20)y > 1 - A
Now by (1)
M(PF* — fanea(K), €)x=M(PF* — Qfanes, €)x
> min {M(f* — fon.1, €/q)y, M(f*(K) — PF*, €/0)x, M(fon+1(K) — Qfans1, €/Q)x,
M(fanea (K) — PF*, 2€/0)x, M(FX(K) — Qf2net, 2€/0)x}
> min {M(f* — fon.1, €/Q)y, M(F¥(K) — fon:2(K), (1 — Q) €/20),
M(fons2(k) — PF*, (1 — ) €/20)v, M(fanes (K) — fonsa(K) | €/Q)v,
M(fans1 (K) — Fansa(K), €/0)v, M(fans2(K) — PF*, €/0)y,
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M(F*(k) - Fansa(k), 2€/Q)v} > 1 -2, by (5)
Hence {f.} — Pf* implying Pf* = f*(k). Similarly Qf* = f*(k). Thus Pf* = f*(k) = Qf*.
To prove (B), we have f,—g, € Sforn=0, 1,2, ...
M(fa =0, €)y = min {f, — foi1, €/3)y, M(fas1 — Onea, €/3)y,
M(gn+l —On e/3)Y}
Repeated use of (4) gives
M(fo—gn €)y  =min{M(fo - f1, /3 ")y, M(fL — g1, €/3 q")v,
M(9: — o, €/30")v}-
Since each term on the R.H.S. — 1 as n — o. Therefore, lim f, = lim g,. This proves (B). If f*
and g* € S¢* and f* = g*, then by (1),
- M(f*—g* ey  =M(f*(k) - g*(k), €)x = M(Pf* - Qg*, €)y
> M(f* — g*, €/q)v, a contradiction.
Thus P and Q have a unique common fixed point in S¢*.
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