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ABSTRACT 
In this paper we discuss an analytical study of hall current effects on unsteady magneto hydro dynamic 

flow of an incompressible electrically conducting couple stress fluid through a porous medium between 

parallel plates, taking into account pulsation of the pressure gradient effect and under the influence of a 

uniform inclined magnetic field of strength Ho inclined at an angle of inclination  with the normal to the 

boundaries. The solution of the problem is obtained with the help of perturbation technique. Analytical 

expression is given for the velocity field and the effects of the various governing parameters entering into 
the problem are discussed with the help of graphs.  The shear stresses on the boundaries and the discharge 

between the plates are also obtained analytically and their behaviour computationally discussed with 

different variations in the governing parameters in detail. 

 

Key Words: Unsteady Flows, Hall Current Effects, Parallel Plate Channels, Mhd Flows And Porous 
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INTRODUCTION  
A fluid flow driven by a pulsatile pressure gradient through porous media is of great interest in 

physiology and Biomedical Engineering. Such a study has application in the dialysis of blood through 
artificial kidneys or blood flow in the lung alveolar sheet. Ahmadi and Manvi (1971) derived a general 

equation of motion for flow through porous medium and applied it to some fundamental flow problems. 

Rapits, 1942 has studied the flow of a polar fluid through a porous medium, taking angular velocity into 
account. The problem of peristaltic transport in a cylindrical tube through a porous medium has been 

investigated by El-Shehawey and El-Sebaei (2000) their results show that the fluid phase means axial 

velocity increases with increasing the permeability parameter k . Afifi and Gad (2001) have studied the 

flow of a Newtonian, incompressible fluid under the effect of transverse magnetic field through a porous 

medium between infinite parallel walls on which a sinusoidal traveling wave is imposed. The flow 

characteristics of a Casson fluid in a tube filled with a homogenous porous medium was investigated by 
Dash et al., (1996). Bhuyan Hazarika (2001) has studied the pulsatile flow of blood in a porous channel in 

the presence of transverse magnetic field. The flows in bends and branches are of interest in a 

physiological context for several reasons. The additional energy losses due to the local disturbances of the 
flow are of interest in calculating the air flow in the lungs and in wave-propagation models of the arterial 

system. The details of the pressure and shear stress distribution on the walls of a bend or bifurcation are of 

interest in the study of parthenogenesis because it appears that the localization of plaques is related to the 

local flow patterns. In vascular surgery questions arise, such as what is the best angle for vascular graft to 
enter an existing artery in a coronary bypass (Skalak and Ozkaya, 2000). The theory of laminar, steady 

one-dimensional gravity flow of a non-Newtonian fluid along a solid plane surface for a fluid exhibiting 

slope at the wall has been studied by Astarita et al., (1964). Suzuki and Tanaka (1971) have carried out 
some experiments on non-Newtonian fluid along an inclined plane, the flow of Rivlin-Ericksen 

incompressible fluid through an inclined channel with two parallel flat walls under the influence of 

magnetic field has been studied by Rathod and Shrikanth (1998). Rathod and Shrikanth (1998) have 
studied the MHD flow of Rivlin-Ericksen fluid between two infinite parallel inclined plates. The gravity 
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flow of a fluid with couple stress along an inclined plane at an angle with horizontal has been studied by 

Chaturani and Upadhya (1977). Rathod and Thippeswamy (1999) have studied the pulsatile flow of blood 

through a closed rectangular channel in the presence of microorganisms for gravity flow along an inclined 
channel. Hence, it appears that inclined plane is a useful device to study some properties of non-

Newtonian fluids. Recently Syamala et al ., (2012) discussed the steady hydro magnetic flow of a couple 

stress fluid in a parallel plate channel through a porous medium under the influence of a uniform inclined 

magnetic field of strength Ho inclined at an angle of inclination  with the normal to the boundaries. Also 

the problem extended and Sarojini et al., (2012) studied the steady hydro magnetic flow of a couple stress 
fluid in a parallel plate channel through a porous medium under the influence of a uniform inclined 

magnetic field taking hall current into account. Later Sarojini et al., (2012) studied analytical study of 

unsteady magneto hydro dynamic flow of an incompressible electrically conducting couple stress fluid 

through a porous medium between parallel plates taking into account of pulsation of pressure gradient 
effect and under the influence of a uniform inclined magnetic field. In this paper, we discuss an analytical 

study of hall current effects on unsteady magneto hydro dynamic flow of an incompressible electrically 

conducting couple stress fluid through a porous medium between parallel plates, taking into account 
pulsation of the pressure gradient effect and under the influence of a uniform inclined magnetic field of 

strength Ho inclined at an angle of inclination  with the normal to the boundaries.  

 

FORMULATION AND SOLUTION OF THE PROBLEM 

We consider the unsteady hydro magnetic flow of a couple stress fluids through a porous medium in a 
parallel plate channel induced by the pulsation of the pressure gradient. The plates are assumed to be 

electrically insulated. The fluid is driven by a uniform pressure gradient parallel to the channel plates and 

the entire flow field is subjected to a uniform inclined magnetic field of strength Ho inclined at an angle of 

inclination  with the normal to the boundaries in the transverse xy-plane. In the equation of motion 

along x-direction the x-component current density oze HJμ- and the z-component current density oxe HJμ . 

We choose a Cartesian system O(x, y, z) such that the boundary walls are at z=0 and z=l and are assumed 

to be parallel to xy-plane. The equations for steady flow through porous medium are governed by 
Brinkman’s model. At the interface the fluid satisfies the continuity condition of velocity and stress. The 

boundary plates are assumed to be parallel to xy-plane and the magnetic field of strength Ho inclined at an 

angle of inclination to the z-axis in the transverse xz-plane. This inclined magnetic field on the axial 

flow along the x-direction gives rise to the current density along y-direction in view of Ohm’s law. Also 

the inclined magnetic field in the presence of current density exerts a Lorentz force with components 
along O(x, z) direction, The component along z-direction induces a secondary flow in that direction while 

its x-components changes perturbation to the axial flow.  

The steady hydro magnetic equations governing the couple stress fluid under the influence of a uniform 

inclined magnetic field of strength Ho inclined at an angle of inclination  with reference to a frame are 
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Where, the term 
4

4

z

u

ρ

η




  in the above equation gives the effect of couple stresses. All the physical 

quantities in the above equation have their usual meaning. (u, w) are the velocity components along O(x, 

z) directions respectively.   is the density of the fluid, eμ  is the magnetic  permeability,  is the 

coefficient of kinematic viscosity, k is the permeability of the medium, Ho is the applied magnetic field. 
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When the strength of the magnetic field is very large, the generalized Ohm’s law is modified to include 

the Hall current, so that 

H)qμ(EσHJ
H

τω
J e

0

ee                                      (2.3) 

Where, q is the velocity vector,  H  is the magnetic field intensity vector, E  is the electric field , J  is the 

current density vector, e  is the cyclotron frequency, e  is the electron collision time,   is the fluid 

conductivity  and, eμ is the magnetic permeability. In equation (2.3) the electron pressure gradient, the   

ion-slip and thermo-electric effects are neglected. We also assume that the electric field E=0 under 

assumptions reduces to  

  SinwHσμSinJmJ 0ezx                                                                                          (2.4) 

   SinuHσμSinJmJ 0exz                                                                                                            (2.5) 

Where eeτωm    is the Hall parameter.  

On solving equations (2.3) and (2.4) we obtain  
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Using the equations (2.6.) and (2.7), the equations of the motion with reference to frame are given by 
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Let    iwuq   

Now combining the equations (2.8) and (2.9), we obtain 
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The boundary conditions are, (Since the couple stresses vanish at both the plates which in turn) implies 

that  
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We introduce the non-dimensional variables 
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Using the non-dimensional variables (dropping asterisks), we obtain 
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Corresponding the non-dimensional boundary conditions are given by 
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For the pulsation pressure gradient 
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Equation (2.15) reduces to the form     





































































 

ti

os

1

22

22

2

2

4

4

e
x

p

x

p
a

 qaD
Sinm1

)Sinim(1SinM

z

q
a

z

q

t

q
a







2

222

                                            (2.21) 

The equation (2.21) can be solved by using the following perturbation technique  
ti
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Substituting the equation (2.22) in (2.21) and equating like terms on both sides 
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 Subjected to the boundary conditions 
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The solutions of the equations (2.23) and (2.24) subjected to the boundary conditions (2.25) to (2.32) give 

the velocity distribution of the fluid under consideration.             
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Where, the constants 821 .,........., CCC   are given in appendix.  

The shear stresses on the lower and upper plates are given in dimension less form as 
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RESULTS AND DISCUSSION  
The unsteady state velocities representing the ultimate flow have been computed numerically for different 

sets of governing parameters namely viz. The Hartmann parameter M, the inverse Darcy parameter D
-1

, 

couple stress parameter a and m the hall parameter and their profiles are plotted in figures (1-4) and (5-8) 
for the velocity components u and v respectively. For computational purpose we have assumed an angle 

of inclination    3/  and the pulsation of pressure gradient in the x-direction and are fixed. Since 

the thermal buoyancy balances the pressure gradient in the absence of any other applied force in the 

direction, the flow takes place in planes parallel to the boundary plates. However the flow is three 

dimensional and all the perturbed variables have been obtained using boundary layer type equations, 
which reduce to two coupled differential equations for a complex velocity.  

We notice that the magnitude of the velocity component u reduces and v increases with increasing the 

intensity of the magnetic field M the other parameters being fixed, it is interesting to note that the 
resultant velocity experiences retardation with increasing M (Fig. 1 and 4). (Fig. 2 and 5) exhibit both the 

velocity components u and v reduces with increasing the inverse Darcy parameter D
-1

. Lower the 

permeability of the porous medium lesser the fluid speed in the entire fluid region.  The resultant velocity 
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experiences retardation with increasing the inverse Darcy parameter D
-1

. Here we observe that the 

retardation due to an increase in the porous parameter is more rapid than that due to increase in the 

Hartmann number M. In other words, the resistance offered by the porosity of the medium is much more 
than the resistance due to the magnetic lines of force. We notice that u exhibits a great enhancement in 

contrast to v which retards appreciably with increase in the couple stress parameter a (or) the hall 

parameter m  but the resultant velocity shows and appreciable enhancement with in a (or) the hall 
parameter m (Fig. 3, 4, 5 and 6). The shear stresses on the upper and lower plates and the discharge 

between the plates are calculated computationally and tabulated in the tables (1-5). The magnitude of 

these stresses at the upper plate is very high compared to the respective magnitudes at the lower plate. We 

notice that the magnitude of the both stresses x  
and y  increase with increasing the couple stress 

parameter a and the hall parameter m on the upper plate and lower plates.  On the upper plate, the 

magnitudes of x  
and y increase with increasing M, but x  

reduces and y enhances with increase in D
-

1
, while on the lower plate y  rapidly enhances and x reduces with increase in M.  The reversal behavior 

shows that x  
and y  with increase in D

-1
 (Tables. 1-4). The discharge Q reduces in general with increase 

in the intensity of the magnetic field M and lower permeability of the porous medium (corresponding to 

an increase in D
-1

) and enhances the couple stress parameter a and the hall parameter m    (Table. 5). 

 

 
Figure 1: The velocity profile u for different M with D

-1
=1000, a=0.25, m=1 

 

Table 1:   The shear stresses ( x ) on the upper plate 

a
2

 
I II III IV V VI VII 

0.25 1.085648 1.226565 1.566558 0.995645 0.457587 1.125541 1.255665 

0.5 1.468623 1.566896 1.856845 1.246848 0.675663 1.588466 1.655845 

0.75 1.533655 1.994536 2.085662 1.327595 0.766578 1.688548 1.855485 
1 1.636898 2.246555 2.856845 1.457514 0.899458 1.788545 1.966995 

 I II III IV V VI VII 

M 2 5 8 2 2 2 2 

D
1

 1000 1000 1000 2000 3000 1000 1000 

m 1 1 1 1 1 2 3 
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Figure 2: The velocity profile u for different D

-1 
with M=2, a=0.25,m=1 

 

 
Figure 3: The velocity profile u for different a with D

-1
=1000, M=2, m=1 

 

Table 2:   The shear stresses ( y ) on the upper plate 

a
2

 
I II III IV V VI VII 

0.25 -0.45456 -0.63445 -0.85474 -0.66985 -1.56784 -0.8596 -0.9855 
0.5 -0.76547 -0.79948 -0.99477 -0.94125 -2.00988 -0.9885 -1.5854 

0.75 -0.99988 -1.00869 -1.45695 -1.47658 -2.24985 -1.0254 -1.8695 

1 -1.28455 -0.38414 -1.88699 -1.83998 -2.56155 -1.5425 -2.1445 

 I II III IV V VI VII 

M 2 5 8 2 2 2 2 

D
1

 1000 1000 1000 2000 3000 1000 1000 

m 1 1 1 1 1 2 3 
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Figure 4: The velocity profile u for different m with D

-1
=1000, a=0.25, M=2 

 

 
Figure 5: The velocity profile v for different M with D

-1
=1000, a=0.25, m=1 

 

Table 3:   The shear stresses ( x ) on the lower plate 

a
2

 
I II III IV V VI VII 

0.25 0.028455 0.023788 0.018252 0.045588 0.065655 0.054784 0.088545 

0.5 0.036699 0.033455 0.030255 0.095256 0.256458 0.055254 0.096654 
0.75 0.042455 0.039914 0.032695 0.146652 0.846458 0.084745 0.101145 

1 0.051144 0.045695 0.035588 0.284124 0.984458 0.099685 0.124455 

 I II III IV V VI VII 

M 2 5 8 2 2 2 2 

D
1

 1000 1000 1000 2000 3000 1000 1000 

m 1 1 1 1 1 2 3 
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Figure 6: The velocity profile v for different D

-1 
with M=2, a=0.25, m=1 

 

 
Figure 7: The velocity profile v for different a with D

-1
=1000, M=2, m=1 

 

Table 4:   The shear stresses ( y ) on the lower plate 

a
2

 
I II III IV V VI VII 

0.25 -0.03445 -0.03566 -0.04623 -0.01652 -0.00477 -0.0455 -0.0584 
0.5 -0.04144 -0.04458 -0.05222 -0.02645 -0.01584 -0.0685 -0.854 

0.75 -0.05658 -0.06655 -0.06654 -0.04763 -0.02686 -0.0785 -0.1255 

1 -0.06985 -0.06699 -0.07652 -0.05865 -0.03555 -0.0985 -0.1554 

 I II III IV V VI VII 

M 2 5 8 2 2 2 2 

D
1

 1000 1000 1000 2000 3000 1000 1000 

m 1 1 1 1 1 2 3 
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Figure 8: The velocity profile v for different m with D

-1
=1000, M=2, a=0.25 

 

Table 5:   Discharge 

a
2

 
I II III IV V VI VII 

0.25 0.568142 0.502415 0.455658 0.487458 0.411322 0.655852 0.758485 

0.5 0.685524 0.655474 0.538454 0.558695 0.501012 0.754855 0.801241 

0.75 0.778854 0.685471 0.604458 0.701452 0.610214 0.855741 0.888587 

1 0.824452 0.755663 0.689236 0.800052 0.701142 0.912542 1.002545 

 I II III IV V VI VII 

M 2 5 8 2 2 2 2 

D
1

 1000 1000 1000 2000 3000 1000 1000 

m 1 1 1 1 1 2 3 

 

Conclusion 

Under the effect of pulsation of pressure gradient, the resultant velocity experiences retardation with 

increasing M. 
The resultant velocity experiences retardation with increasing the inverse Darcy parameter D

-1 
in the 

entire fluid region.  

When we increase the couple stress fluid parameter (or) the hall parameter m, the resultant velocity shown 
and appreciable enhancement in the entire flow region.  

The magnitude of these stresses at the upper plate is very high compared to the respective magnitudes at 

the lower plate. 
The discharge Q reduces in general with increase in the intensity of the magnetic field M and lower 

permeability of the porous medium and enhances the couple stress parameter a (or) the hall parameter m. 
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APPENDIX: 
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