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ABSTRACT 
Energy levels of an electron, a heavy hole and a light hole in a quantum well with potential shape 

proportional to |z|
2/3

 are calculated as a function of the wellwidth and the barrier height, using “matching 

in the middle” method combined with Runge-Kutta method.  The energies decrease as the wellwidth 
increases and increase as the barrier height increases.  The transition energies Enm are obtained between 

the n
th

 electron state and the m
th
 heavy hole or light hole state.  The results agree well with the available 

theoretical and experimental values.  The earlier conclusion that the energy levels in a quantum well with 

graded interfaces are the same as those in a quantum well whose effective thickness is slightly larger than 
that of the nominal QW, is confirmed for the present case. 
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INTRODUCTION 

Low dimensional systems such as quantum wells, quantum dots and quantum dots and quantum wires are 

produced from semiconductor nanomaterials by crystal growth techniques. Quantum wells (QW) are 
grown with various shapes as rectangular quantum wells (RQW) (Greene and Bajaj, 1983; Miller et al., 

1984), parabolic quantum wells (PQW) (Merlin, 1987; Brey et al., 1989-II), triangular quantum wells 

(TQW) (Jiang and Wen, 1994-II), |z|
2/3

 QW (Sputz and Gossard, 1988-I; Arulmozhi and 
Balasubramanian, 1995 and Arulmozhi and Balasubramanian, 1996) etc.  Calculation of electron and hole 

energy levels and hence the transition energies in such quantum wells will be useful for many advanced 

studies on them. The intersubband transitions and impurity binding energy in differently shaped 
semiconductor quantum wells under a magnetic field are calculated by Yesilgul et al., (2011) using a 

variational method within the effective mass approximation.  The effects of nitrogen and indium mole 

concentration on the intersubband optical absorption for (1-2) transition and the binding energy of the 

shallow-donor impurities in a Ga1-xInxNyAs1-y/GaAs/Al0.3Ga0.7As quantum well under the electric field is 
theoretically calculated by Ungan et al., (2012).   

Villamil et al., (2005) have studied the behaviour of the binding and transition energies of a donor 

shallow impurity in a cylindrical GaAs-Ga0.6Al0.4As quantum well wire (QWW) as a function of the wire 
radius, the impurity position and the applied magnetic field. Eseanu (2010) has investigated the 

intersubband transitions in square and parabolic quantum wells under simultaneous action of the 

hydrostatic pressure and high-frequency laser field.  The simultaneous effects of hydrostatic pressure and 
magnetic field applied along the quantization direction on intersubband optical transitions in Pöschl-

Teller quantum well are investigated by Hakimyfard et al., (2009).   

The dependences of intersubband transitions on well width and nitrogen (N) content in n-type 

In0.23Ga0.77As1-xNx/GaAs quantum wells (QWs) are investigated by Liu et al., (2008) using a ten-band k.p 
model.  The effects of hydrostatic pressure on the correlated e-h transition energies in single GaAs-Ga1-

xAlxAs quantum wells are calculated by Raigoza et al., (2006) via a variational procedure, in the 

framework of the effective-mass and non-degenerate parabolic-band approximations.  Various methods 
have been followed for finding the energy levels of electron and hole by solving Schrödinger equation 

and this paper follows a refined procedure called “matching in the middle” method combined with the 

conventional Runge Kutta method.   
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THEORY 
The potential profile for a |z|

2/3
 QW is taken to be of the form (along z-axis) 
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where L is the wellwidth and Vo is the barrier height which depends on Aluminium composition x.  Vo = 

0.65Eg for the electron (Leavitt, 1987-I) and Vo = 0.35Eg for the hole (Leavitt, 1987-I), Eg is the 
variation in bandgap difference between the conduction band and valence band with x. 

Eg  = 1.55x + 0.37x
2
  eV      (2) 

The unit of energy is the effective Rydberg and the unit of length is the effective Bohr radius given by the 

following expressions respectively. 
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where 0  is the static dielectric constant of GaAs and m* is the effective mass of the electron or the 

heavy hole or the light hole, as the case may be.  The Hamiltonian for an electron or a hole in a bare 

quantum well is given in the effective mass approximation as 

)(
2

2

zV
dz

d
H           (4) 

The Schrödinger equation for such a system is given by Hψ = Eψ, which is a second order differential 

equation  
2

2
( )

d
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dz


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
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where E is the energy eigenvalue.  This equation is solved by a refined procedure called “Matching in the 

middle” method combined with the conventional Runge-Kutta method used by Neethiulagarajan and 

Balasubramanian (1989). 

Runge-Kutta method 

Equation (5) can be represented as system of two simultaneous first order differential equations as  

d
y

dz


  and  ( )

dy
V z E

dz
  .       (6)   

The Runge-Kutta method is used to integrate these equations simultaneously and determine the value of 

the function and its derivative at a point (z + h), if the value of the function and its derivative at a point z 
are known, with h being the stepsize of the integration.  The computation formulae are given below.  
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Matching in the middle method 
In this procedure, equation (5) is integrated forward from the origin in the direction of increasing z and 

integrated backward from the distance ( )
2

L
a

 in the direction of decreasing z.  The forward solution f 

and its derivative yf and the backward solution b and its derivative yb, thus obtained are matched at the 

middle point ( )
4

L
a

called the matching point. 

For the forward solution, the initial conditions are at z = 0,  = 1, y = 0 and for the backward solution, the 

conditions are at z = L/2,  = e
-βL/2

, y = t (arbitrary).  The two adjustable parameters E and t are calculated 

in the iterative process that attempts to match the solution f and b at the matching point ( )
4

L
a

.  

Matching conditions are f = b   and yf = yb  at z =  ( )
4

L
a

.  When the effective mass mismatch is 

included, the matching conditions are f = b   and m2*yf = m1*yb at z = ( )
4

L
a

, where m1* and m2* are 

the effective masses in GaAs and Ga1-xAlxAs respectively. 

Iterative process is started with some arbitrary values of E and t and adjusted with the following 

expressions until the matching conditions are ultimately satisfied.  
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, which are calculated during the course of the program.. 

 

RESULTS AND DISCUSSION 
The experimental sample used by Sputz and Gossard (1988-I) has L = 1024 Ǻ and x= 0.27.  The effective 

masses and the dielectric constant in Ga1-xAlxAs are calculated as given by Adachi (1985). 

       1x xm Al Ga As m GaAs x m AlAs m GaAs   


      

       0 1 0 0 0x xAl Ga As GaAs x AlAs GaAs          
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The material parameters used are listed in Table – 1.  These give a* = 105 Ǻ and R* = 5.19 meV for 

electron in the GaAs region.  The effective masses and also the dielectric constants are different in the 

well region and the barrier region. The dielectric constant mismatch is ignored in the present work. The 
small difference in the dielectric constants would give rise to image potentials which are generally weak 

for the semiconductor systems considered in our present work except for extremely narrow wells. 

 

 
Figure 1:  Variation of the ground state energies of an electron, a heavy hole and a light hole in a 

|z|
2/3

 quantum well (with effective mass mismatch included) as a function of the wellwidth 

 

The energies of the electron and hole states are obtained by solving equation (5) numerically. The 
effective mass mismatch for the conduction electron is considered, in the calculations.  For the holes, the 

problem is more complicated since the valence bands are not spherical and there is also the spin-orbit 

splitting.  However, the simplified picture with similar continuity condition, as for the electron state, is 

used.  The same formula for the effective masses of the holes in Ga1-xAlxAs is used, as for the electrons. 

 
Figure 2:  Variation of the ground state energies of an electron, a heavy hole and a light hole in a 

|z|
2/3

 quantum well (with effective mass mismatch included) as a function of the barrier height.  Vo 

for electrons = 220.23 meV.  Vo for holes = 118.59 meV 
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Figure - 1 shows the ground state energies of the electron, heavy hole and light hole as a function of the 

wellwidth and Figure – 2 as a function of the barrier height.  It is noted that the light hole energies are 

higher than that of the heavy hole energies and lower than that of the electron.  This is expected because 
me* < mlh* < mhh*.  The energies decrease as the wellwidth increases and increase as the barrier height 

increases.  This behavior is the same as in other quantum wells.  

 

Table 1: The material parameters used in the calculations x = 0.27 

Parameters GaAs [19] AlAs [19] Ga1-xAlxAs 

me* 0.0665 m0 0.15 m0 0.09 m0 

mhh* 0.34 m0 0.40 m0 0.36 m0 
mlh* 0.094 m0 0.18 m0 0.12 m0 

ε0 13.2 10.1 12.26 

 

The transition energies Enm are obtained between the n
th

 electron state and the m
th
 heavy hole or light hole 

state.  The results are listed in Table – 2, which also shows the experimental results of Sputz and Gossard 

(1988-I).  There has been a discrepancy between their theoretical estimates of the electron and the hole 

state energies and their experimentally measured values from photoluminescence data in |z|
2/3

 QW.  The 
average difference between the theoretical transition energies and the experimental ones has been 

attributed to the binding energy of an exciton. 

 

Table 2: Transition energies Enm between n
th

 electron state and m
th

 heavy hole or light hole state.  x 

= 0.27, V0 = 220.23 meV for electrons and V0 = 118.59 meV for holes. 

Transition Transition energy (meV) 

Without effective 

mass mismatch L 

= 1024 Ǻ 

With effective mass mismatch Theoretical 

results [6] 

Experimental 

results [6] L = 1024 Ǻ L = 1224 Ǻ 

E11h 64.01 57.43 52.56 52.6 46.0 

E11l 71.16 63.88 58.44 58.4 52.0 
E13h 87.33 82.34 75.35 75.4 72.8 

E22h 110.86 109.78 101.07 101.4 94.1 

E22l 123.25 122.98 111.36 113.3 108.4 
E24h 128.10 125.47 114.20 117.6 111.9 

E33h 143.12 139.97 128.27 130.4 123.2 

E35h 157.54 154.50 141.56 144.1 138.9 

 
The values calculated including the effective mass mismatch are found to be systematically higher then 

the experimental results by an average value of 13.6 meV for the case of  L = 1024 Ǻ.  This large 

difference is mainly due to two reasons. 
Correction due to exciton binding energy should be applied to the theoretical values. 

The experimental sample of Sputz and Gossard (1988-I) has graded interfaces and this has not been taken 

into account in the present work.   

The energy levels in a rectangular quantum well with narrow graded interfaces have been discussed by 
Bastard (1981).  His main conclusion is that the energy levels in a quantum well with graded interfaces 

are the same as those in a rectangular quantum well whose effective thickness is slightly larger than that 

of the nominal QW.  In order to check this for the present case with potential profile proportional to |z|
2/3

, 
calculations are repeated by varying the well thickness.  The results for L = 1224 Ǻ and x = 0.27 are also 

given in the Table – 2, without correcting for the exciton binding energy.  The values agree well with the 

experimental results of Sputz and Gossard (1988-I) after correcting for the exciton binding energy 

estimated by Arulmozhi and Balasubramanian (1995). 
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