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ABSTRACT   
The frequency equations are derived for the radial vibrations in a micro-isotropic, micro-elastic solid sphere. It is 

interesting to observe that two additional frequencies are found which are not encountered in classical theory of 

elasticity. The result of the classical case is obtained as a particular case of it.  
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INTRODUCTION 

Modern engineering structures are often made up of material possessing of internal structure. Polycrystalline 

materials, materials with fibrous and coarse grain structures come under this category. In such materials the ratio 

m/v varies in the range v<v* where v* is critical volume (Eringen, 1968). Therefore, the classical 

elasticity is inadequate to represent the behavior of such materials. The inadequacy of classical continuum 

approach has lead to the development of the theory of micro-continua. The general theory of micro orphic 

materials introduced by Eringen and Suhubi (1966a and 1964a) deal with substances which exhibit certain 

microscopic effects arising from the local structure of media. Eringen (1968) derived a theory of micropolar 

elasticity; the model of micropolar elasticity is quite adequate for the representation of solids composed of rigid 

solid cylinders or dum-bell type molecules. By imposing the restriction on the components of the position of point 

in the micro element relative to the centre of mass are linear, Eringen and Suhubi linearized the theory and named 

it as theory of micromorphic materials. To analyze the mechanical behavior of the micromorphic solid, there will 

be 12 second order partial differential equations in 12 unknowns and 18 elastic moduli. Koh (1970) developed a 

somewhat simpler theory by extending the concept of coincidence of the principal directions of stress and strain in 

classical elasticity to the micro-elastic solid. Imposing a particular form of micro-isotropy, Koh obtained special 

constraints on the elastic moduli, thereby reducing the number from 18 to 10 in the special case. The theory 

developed by Koh is known as micro-isotropic, micro-elastic solid. Sato and Usami (1962a); Sato et al., (1962, 

1963) and Usami and Sato (1964) studied the propagation of various types of disturbances in a sphere. The 

problem of wave reflection from surface of the sphere was considered by Nomura and Takaku (1964). Radial 

vibrations of an isotropic elastic sphere and other problems are given in the book by Ghosh (1975). 

In this paper, the problem of radial vibrations in a micro-isotropic, micro-elastic solid sphere is studied. It is 

interesting to observe that two additional frequencies are obtained, which are not encountered in the classical 

theory of elasticity. Further, the result of classical case is obtained as a particular case of this paper. 

 

BASIC EQUATIONS 

The equations of motion and the constitute equations of micro-isotropic, micro-elastic solid without body forces 

and body couples are given by Parameshwaran and Koh (1973) 

The displacement equations of motion are  
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where  
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The stress, couple-stress and stress moment are as follows. 
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where 
 
is the average mass density, j is the micro-inertia. The macro displacement in the micro elastic 

continuum is denoted by ku and the micro deformation by mn for the linear theory, we have the macro strain 

),( mkkm ee  , the macro rotation vector mnkmnk ur ,
2

1
 , the micro-strain ),( nm  and micro-rotation 

kmpkmp 
2

1
 .The stress measures are the asymmetric stress (macro-stress) kmnt , the relative stress (micro-

stress) km and the stress moment  kmnt . Also the couple stress tensor kmnpnmkp tm  . The symbol ( ) shows that the 

quantity is symmetric and [ ] shows the quantity is skew-symmetric. , , 1, 2, 5, 3, 4, 7, 9  and 10 are the ten 

elastic moduli.  

 

FORMULATION AND SOLUTION OF THE PROBLEM 

We consider a micro – isotopic, micro – elastic solid sphere of radius a. we choose the centre of the sphere as the 

origin of the coordinate system (r,,q ). If the displacement filed in an elastic medium manifests a radial symmetry 

with respect to a point that is assumed to be the origin, the radial displacement u , the radial micro – rotation  

and the radial micro – strain rr depends only on the radial distance r form the origin and time, and the other 

components u, uq,  and q are zero. Hence we take  

u =  u(r,t)er                                                                                                                       (11) 
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 = (r,t)er                                                                                                                       (12) 

rr = rr(r,t)                                                                                                                       (13) 

where er is the unit vector at the position vector in the direction of the tangent to the r – curve. 

Under the absence of body forces and body couples the equations of motion (1) to (3) would reduce to 
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In view of (17) the equation (16) reduces to  
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The boundary conditions are  
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We seek the solution of (14) in the form of 

u (r,t) = F(r) e
iwt

                                                                                                                  (22) 

Substituting (22) in (14) we get 
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Using (24) and (25), the equation (23) can be expressed as  
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where x in terms of r is given by (24) and A is a constant  
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Substituting (27) in the boundary condition (19) we get 
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which is the periodic equation corresponding to macro displacement. The frequency equation of classical result 

can be obtained as a particular case of it by allowing 1 and 2 tends to 0. 

Now we seek the solution of (15) in the form  

= G(r) e
it                                                                                                                                                                                        

(29) 

Substituting (29) in (15) we get 
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Suppose y = h1 r                                                                                                              (33) 

Using (33) the equation (31) can be written as 
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where y interns of r is given by (33) and B is a constant. 

Substituting (35) in the boundary condition (20) we get  
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which is the frequency equation corresponding to micro rotation It is dispersive in nature as it depends on the 

frequency. It involves elastic constants other than the classical constants  and . Hence it is an additional wave 

which is not encountered in the classical elasticity. 

Now we seek the solution of (18) in the form of  

rr = H(r)e
it                                                                                                                                                                            
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Substituting (37) in (18) we get 
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This can be written as 
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Let H(r) = 
r

1
 T(r)                                                                                                            (40) 

Substituting (40) in (38) we get  
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It is a Bessel equation, whose solution is  
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1 ,YJ  are Bessel functions with imaginary arguments and is written as  

)()()(
2

12

2

11 lrKLlrILrT                                (42) 

where 21 , LL are arbitrary constants 

Substituting (42) in (40) we get 
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Substituting (44) in the boundary condition (21) we get 
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NUMERICAL CALCULATIONS 

The frequency equation (28) can be reduced to  
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Assuming the non-dimensional quantities m1=0.1 and m2=0.3. We computed the values of phase velocities for 

various values of 
l

a2
and they are shown graphically in Figure ( 1 ) 

.The frequency equation (36) can be reduced to  
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Assuming the non-dimensional quantities s1=1.2, s2=1.5 and s3=1.4. We computed the values of x for various 

values of radius a and they are shown graphically in Figure ( 2 ).It is observed that the proportional phase 

velocity is always lying between 2 and 2.5 for different values of the radius of sphere a. 

 

 
Figure ( 1 ) 

 

 
Figure ( 2 ) 

 

REFERENCES 

Eringen AC (1968). Theory of micro polar elasticity in fracture-II.  Academic Press, New York. 

Eringen AC (1966a). Journal of Mathematics and Mechanics 15 909-924. 

Eringen AC and Suhubi ES (1964a). Non-linear theory of simple microelastic solids-I.  International Journal of 

Engineering Science 2 189-203. 

Ghosh PK (1975). The mathematics of waves and vibrations. The Mac Millon Company of India limited, India. 

Koh SL (1970). A special theory of microelasticity.  International Journal of Engineering Science 8(7) 583-593. 

Nomura Y and Takuku K (1964). On the propagation of elastic waves in an isotropic homogeneous sphere. 

Journal of the  Physical  Society of  Japan 7 204. 

Parameshwaran S and Koh SL (1973). Wave propagation in a micro-isotropic, micro-elastic solid. 

International Journal of Engineering Science 2 95-107. 

Sato Y and Usami T (1962a). Basic study on the oscillation of a homogenous elastic sphere I, frequency of free 

oscillations. Geophysics Magazine 31 15. 

Sato Y, Usami T and Ewing M (1962). Basic study on the oscillation of a homogeneous elastic sphere IV, 

propagation of disturbances on the sphere. Geophysics Magazine 31 237. 

Sato Y, Usami T and Ewing M (1963). Basic study on the oscillation of a homogeneous elastic sphere V. 

Geophysical Journal of the Royal Astronomy Society 8 44. 

Usami T and Sato Y (1964). Propagation of spheroid disturbances on a homogenous elastic sphere. Bulletin of 

the Earthquake Research Institute, Tokyo University 42 273. 

      


