Research Article

SOME NOTIONS BASED UPON STRONGLY GENERALIZED STAR SEMI - CLOSED SETS

A.I EL-Maghrabi 1-2 and S.S. AL-Ahmadi¹

¹Department of Mathematics, Faculty of Science, Taibah University, P.O. Box, 344, AL-Madinah AL-Munawarah, K.S.A.

ABSTRACT

The aim of this paper is to introduce and study the class of strongly generalized star semi – closed sets which is weaker than semi- closed sets (Crossly and Hildebrand, 1971) and stronger than strongly generalized semi-closed sets (El-Maghrabi and Nasef, 2008). Also, some notions in terms of strongly generalized star semi-closed sets are introduced. Further, the concept of strongly semi star $-T_{\frac{1}{2}}$ space is studied.

Key Words: strongly generalized star semi - closed sets, strongly generalized star semi - open sets, strongly generalized star semi - interior, strongly generalized star semi-boundary, strongly generalized star semi-exterior and strongly semi-star- $T_{1/2}$ spaces.

INTRODUCTION AND PRELIMENARIES

In 1970, Levine introduced the concept of generalized closed (briefly, g-closed) sets of a topological space. Bhattacharrya and Lahiri (1987) defined and studied the notion of sg-closed sets. In 1990, Arya and Nour introduced the concept of gs-closed sets. Veera Kumar (2001) defined and studied the notion of g^* -closed sets. The notion of g^*s - closed sets was defined by El-Maghrabi and Nasef (2008).

The purpose of the present paper is to define and investigate the concept of strongly generalized star semi-closed sets and the notion of strongly generalized star -open sets. Moreover, some of their properties are discussed. Further, we define strongly semi- star - $T_{\frac{1}{2}}$ spaces as the space in which every strongly

generalized star semi - closed set is semi - closed.

Throughout this paper, spaces always mean topological spaces on which no separation axiom is assumed unless explicitly stated. Let X be a space and A be a subset of X. The closure of A and the interior of A are denoted by cl (A) and int (A) respectively. A subset A of X is said to be regular-open (Singal and Singal, 1968) (resp. semi – open (Levina, 1963), pre-open (MAshhour et al., 1982), Q-set (Levine, 1961)) if $A = \operatorname{int}(cl(A))$ (resp. $A \subseteq cl(\operatorname{int}(A))$, $A \subseteq \operatorname{int}(cl(A))$, int $(cl(A)) = cl(\operatorname{int}(A))$). A subset A of X is said to be semi – closed if X - A is semi – open or, equivalently, if $\operatorname{int}(cl(A)) \subseteq A$ (Crossly and Hildebrand, 1974). The family of all semi – open (resp. semi-closed) sets will be denoted by $SO(X,\tau)$ (resp. $SC(X,\tau)$). The intersection (resp. the union) of all semi- closed (resp. semi-open) sets containing (resp. contained in) A is called the semi – closure (resp. the semi - interior) of A and will be denoted by $SO(X,\tau)$ (resp. $SC(X,\tau)$).

Definition 2.1. A subset of a space (X, τ) is called:

- 1- a generalized closed (briefly, g-closed) (Levine, 1970) set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open,
- 2- a semi generalized-closed (briefly, sg-closed) (Bhattactaryya and Lahiri, 1987) set if $s-cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open,

²Departement of Mathematics, Faculty of Science, Kafr EL-Sheikh University Kafr EL-Sheikh, EGYPT *Author for Correspondence

Research Article

- 3- a generalized semi-closed (briefly, gs-closed) (Arya and TM, 1990) set if $s-cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open,
- 4- a strongly generalized semi-closed (briefly, g^*s -closed) (El-Maghrabi and Nasef, 2008) set if $s-cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open,
- 5- a g^* -closed (Veera Kumar, 2001) set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open. 6-

Remark 2.1. The complement of g-closed (resp.sg- closed, gs-closed, g^*s - closed, g^* -closed) is called g-open (resp. sg-open, gs-open, g^*s - open, g^* -open).

Definition 2.2. For a subset E of (X, τ) , we define the following:

- (i) $s cl_*(E) = \bigcap \{A : A \text{ is gs closed set}, E \subseteq A \}$ (Dunham, 1982),
- (ii) $s cl^*(E) = \bigcap \{A : A \text{ is sg closed set}, E \subset A \} \text{ (Sundaram et al., 1991)}.$

Definition 2.3. A topological space (X, τ) is called:

- (i) a T_d -space [6] if every gs-closed set is g-closed,
- (ii) a semi $T_{\frac{1}{2}}$ space (Bhattactaryya and Lahiri, 1987) if every sg closed set is semi closed,
- (iii) a T_h -space (Devi, 1994) if every gs-closed set is closed,
- (iv) a $T_{\frac{1}{2}}^*$ -space (Veera Kumar, 2001) if every g^* -closed set is closed,
- (v) a strongly semi- $T_{\frac{1}{2}}$ (briefly, st. semi- $T_{\frac{1}{2}}$) (El-Maghrabi and Nasef, 2008) space if every gsclosed set is g^*s -closed,
- (vi) a semi- T_b space (El-Maghrabi and Nasef, 2008) if every gs-closed set is semi-closed,
- (vii) a semi- T_p space (El-Maghrabi and Nasef, 2008) if every g^*s -closed set is closed,
- (viii) a $T_{1/2}$ space (Levina, 1970) if every g-closed set is closed. (ix)

Lemma 2.1 [4]. If A and B are two subsets of X, then the following statements are hold:

- (i) s-cl (A) (resp. s- int (A)) is semi closed (resp. semi- open),
- (ii) A is semi closed (resp. semi open) iff A = s cl(A) (resp. A = s int(A)),
- (iii) s-cl(X-A) = X-s-int(A) and s-int(X-A) = X-s-cl(A),
- (iv) $x \in s cl(A)$ Iff for each $G \in SO(X, \tau)$ containing x, $G \cap A \neq \emptyset$.

Lemma 2.2 Andrijevic, 1986 Let A be a subset of a space X. Then, $s - cl(A) = A \bigcup int(cl(A))$.

Definition 2.4. A mapping $f:(X,\tau) \to (Y,\sigma)$ is called:

- (i) semi-continuous [10] if $f^{-1}(U)$ is semi-open in (X,τ) , for every open U of (Y,σ) ,
- (ii) irresolute [5] if f^{-1} (U) is semi-open in (X, τ) , for every semi-open U of (Y, σ) ,
- (iii) pre-semi closed [5] if f(V) is semi-closed in (Y,σ) , for every semi-closed set V of (X,τ) .

Research Article

STRONGLY GENERALIZED STAR SEMI-CLOSED SETS

Definition 3.1. A subset A of a space X is called a strongly generalized star semi – closed (briefly, strongly g^*s – closed) set if $s-cl(A) \subseteq U$ whenever $A \subseteq U$ and U is gs – open.

Remark 3.1. The family of all strongly g^*s - closed subsets of a space (X,τ) is denoted by *strongly* $G^*SC(X,\tau)$.

Remark 3.2. The concepts of g-closed (resp. g^* -closed) and strongly g^*s -closed sets are independent.

Example 3.1. If $X = \{a,b,c,d\}$ with two topologies \mathcal{T}_1 , \mathcal{T}_2 on X such that : $\mathcal{T}_1 = \{X, \phi, \{a\}, \{a,b\}\}, \mathcal{T}_2 = \{X, \phi, \{a\}, \{b,c\}, \{a,b,c\}\}\}$, then:

- (1) a subset A={b} of X on \mathcal{T}_1 is strongly g^*s closed but not g-closed and a subset B={a,b,d}of X on \mathcal{T}_1 is g-closed but not strongly g^*s -closed.
- (2) a subset C={a}of X on τ_2 is strongly g^*s -closed but not g^* -closed and a subset D={b,d} of X on τ_2 is g^* -closed but not strongly g^*s -closed.

Remark 3.3. By Definition 3.1 and Remark 3.2, we obtain the following diagram.

However, the converses are not true in general by (Arya and TM, 1990; Crossly and Hildebrand; 1974; Maghrabi and Naesf, 2008; Veera Kumar, 2001) and the following examples .

Example 3.2. If $X = \{a, b, c, d\}$ with topologies \mathcal{T}_1 , \mathcal{T}_2 on X such that:

 $\mathcal{T}_1 = \{X, \phi, \{c,d\}\}, \mathcal{T}_2 = \{X, \phi, \{c\}, \{c,b\}, \{b,c,d\}\}, \text{ then a subset A} = \{a,b,c\} \text{ of } X \text{ on } \mathcal{T}_1 \text{ is strongly } g^*s \text{ - closed but not semi- closed. While, a subset B} = \{a,c\} \text{ of } X \text{ on } \mathcal{T}_2 \text{ is } g^*s \text{ - closed but not strongly } g^*s \text{ - closed.}$

Example 3.3. Let $X = \{a, b, c\}$ with topologies τ_1 , τ_2 on X such that

 $\mathcal{T}_1 = \{ X, \phi, \{a,b\}, \{c\} \}, \mathcal{T}_2 = \{X, \phi, \{a\}, \{a,b\} \}.$ Then, a subset $C = \{a\}$ of X on \mathcal{T}_1 is sg-closed but not strongly g^*s -closed. But a subset $D = \{a,c\}$ of X on \mathcal{T}_2 is gs-closed but not strongly g^*s -closed.

Research Article

Remark 3.4. The union of two strongly g^*s -closed sets need not be strongly g^*s -closed. Let $X = \{a,b,c,d\}$ with topology $\mathcal{T} = \{X, \phi, \{a\}, \{b\}, \{a,b\}\}$. Then, the subsets $A = \{a\}$ and $B = \{b\}$ are strongly g^*s -closed but their union is not strongly g^*s -closed.

Theorem 3.1. A subset A of a space (X,τ) is strongly g^*s -closed if and only if every gs - open set G containing A, there exists a semi – closed set F such that $A \subseteq F \subseteq G$.

Proof. Necessity. Let A be a strongly g^*s -closed set, $A \subseteq G$ and G be gs – open. Then $s - cl(A) \subseteq G$. Set, s - cl(A) = F. Hence, there exists a semi – closed set F such that $A \subseteq F \subseteq G$.

Sufficiency. Assume that $A \subseteq G$ and G is a gs – open set of X. Then by hypothesis, there exists a semi – closed set F such that $A \subseteq F \subseteq G$, therefore, $s - cl(A) \subseteq G$. So, A is strongly g^*s -closed.

Theorem 3.2. Let A be a strongly g^*s -closed set of X. Then (s-cl(A))-A does not contain any non empty g - closed set.

Proof. Let F be a g - closed set such that $F \subseteq (s-cl(A))-A$. Then $F \subseteq X-A$ this implies that $A \subseteq X-F$. Since, A is strongly g^*s - closed and X-F is g - open, then $s-cl(A) \subseteq X-F$, that is $F \subseteq X-(s-cl(A))$, hence $F \subseteq s-cl(A) \cap (X-(s-cl(A)))=\phi$. This shows that $F=\phi$.

The converse of the above theorem may not be true as is shown by the following example.

Example 3.4. In Example 3.1, if $A = \{a, b, d\}$ is a subset of X on a topology \mathcal{T}_2 , then $(s - cl(A)) - A = \{c\}$ does not contain any non empty g-closed set.

Corollary 3.1. Let A be a strongly g^*s -closed set of X. Then (s-cl(A))-A does not contain any non empty gs - closed set .

Proof. Obvious.

Corollary 3.2. Let A be a strongly g^*s - closed set. Then A is semi - closed if and only if (s-cl(A))-A is gs - closed.

Proof. Necessity. Assume that A is strongly g^*s - closed and semi - closed sets. Then s-cl(A)=A and hence $(s-cl(A))-A=\varphi$ which is gs - closed.

Sufficiency. Suppose that s-cl(A)-A is gs - closed and A is strongly g^*s -closed. Then by Corollary 3.1, s-cl(A)-A does not contain any non empty gs - closed subset of X. Hence A is semi - closed.

Theorem 3.3. For each $x \in X$, then $\{x\}$ is gs-closed or its complement $X - \{x\}$ is strongly g^*s -closed.

Proof. Suppose that $\{x\}$ is not gs-closed. Then its complement is not gs-open. Since, X is the only gs-open set containing $X - \{x\}$, that is, $s - cl(X - \{x\}) \subseteq X$ holds. This implies that $X - \{x\}$ is strongly g^*s - closed.

Proposition 3. 1. If A is a strongly g^*s -closed set and $A \subseteq B \subseteq s - cl(A)$, then B is strongly g^*s -closed.

Proof. Let B \subseteq U and U be a gs- open set of X. Then A \subseteq U. Since, A is strongly g^*s - closed, hence $s-cl(A)\subseteq U$, but $B\subseteq s-cl(A)$. Then $s-cl(B)\subseteq U$. Hence, B is strongly g^*s - closed.

Proposition 3. 2. If (X, τ) is a topology space and $A \subseteq X$, then A is semi – closed, if one of the following two cases holds:

Research Article

- (1) If A is strongly g^*s -closed and gs-open.
- (2) If A is strongly g^*s -closed and open.

Theorem 3.4. Let A be a subset of a space X, the following are equivalent:

- (i) A is regular open,
- (ii) A is open and strongly g^*s -closed.
- **Proof.** (i) \rightarrow (ii). Let U be a gs-open set containing A and A be a regular-open set. Then, $A \cup \text{int}(cl(A)) = A \subseteq U$. So, $s cl(A) \subseteq U$ and therefore A is strongly g^*s -closed.
- (ii) \rightarrow (i). Since, A is an open and a strongly g^*s -closed sets, then by Proposition 3.2(2), A is semi-closed. But, A is pre-open. Therefore, A is regular-open.

Theorem 3.5. If A is a subset of a space X, the following are equivalent:

- (i) A is clopen,
- (ii) A is open, a Q-set and strongly g^*s -closed.

(iii)

- **Proof.** (i) \rightarrow (ii). Since, A is clopen, hence A is both open and a Q- set. Let U be a gs-open set containing A. Then, $A \bigcup \operatorname{int} (cl(A)) \subseteq U$ and so $s cl(A) \subseteq U$. Hence, A is strongly g^*s -closed.
- (ii) \rightarrow (i). Hence by Theorem 3.4, A is regular-open. Since, every regular-open set is open, then A is a Q-set, hence A is closed. Therefore, A is clopen.

STRONGLY GENERALIZED STAR SEMI-OPEN SETS

Definition 4.1. A subset A of a space X is called a strongly generalized star semi-open (briefly, strongly g^*s - open) set iff X - A is strongly g^*s - closed.

Remark 4.1. The family of all strongly g^*s - open subsets of X is denoted by *strongly* $G^*SO(X,\tau)$.

Theorem 4.1. For a subset A of a space X, the following statements are equivalent:

- (i) A is strongly g^*s open,
- (ii) For each gs-closed set $F \subseteq X$ contained in A, $F \subseteq s \operatorname{int}(A)$,
- (iii) For each gs-closed set $F \subseteq X$ contained in A, there exists a semi-open set $G \subseteq X$ such that $F \subset G \subset A$.
- **Proof.** (i) \rightarrow (ii). Let $F \subseteq A$ and F be a gs-closed set. Then $X A \subseteq X F$ which is gs-open. Hence, s cl $(X A) \subseteq X F$. Therefore by Lemma 2.1, (iii), $F \subseteq s \text{int}(A)$.
- (ii) \to (iii). Let $F \subseteq A$ and F be a gs-closed set. Then by hypothesis, $F \subseteq s \text{int}(A)$. Set s int(A) = G, hence $F \subseteq G \subseteq A$.
- (iii) \rightarrow (i). Let $X A \subseteq U$ and U be a gs-open set .Then $X U \subseteq A$ and by hypothesis, there exists a semi-open set G such that $X U \subseteq G \subseteq A$, that is, $X A \subseteq X G \subseteq U$. Therefore, by Theorem 3.1, X A is strongly g^*s closed. Hence, A is strongly g^*s open.
- **Remark 4.2.** Every semi-open set is strongly g^*s -open but, the converse is not true as is shown by the following example.
- **Example 4.1.** In Example 3.2, a subset $A = \{d\}$ of X on \mathcal{T}_1 is strongly g^*s -open but not semi-open.
- **Remark 4.3.** The intersection of two strongly g^*s -open sets need not be strongly g^*s -open, as is illustrated by the following example.

Research Article

Example 4.2. Let $X = \{a, b, c, d\}$ and $\mathcal{T} = \{X, \phi, \{a\}, \{b\}, \{a,b\}\}$. Then, the subsets $A = \{b,c,d\}$ and $B = \{a,c,d\}$ are strongly g^*s -open but their intersection is not strongly g^*s -open.

Theorem 4.2. If A is a strongly g^*s -open subset of X, then U = X, whenever U is gs-open and $s - \text{int}(A) \bigcup (X - A) \subseteq U$.

Proof. Suppose that U is a gs- open set and $s - \operatorname{int}(A) \cup (X - A) \subseteq U$. Then, $X - U \subseteq (X - (s - \operatorname{int}(A))) \cap A$ and by Lemma 2.1(iii), $X - U \subseteq s - \operatorname{cl}(X - A) - (X - A)$. Hence, by Corollary 3.1, $X - U = \phi$ which implies that X = U.

Proposition 4.1. If $s - \text{int}(A) \subseteq B \subseteq A$ and A is strongly g^*s -open, then B is strongly g^*s -open.

Proof. Since, $s - \text{int}(A) \subseteq B \subseteq A$, then $X - A \subseteq X - B \subseteq X - s - \text{int}(A)$, hence by Lemma 2.1, (iii), $X - A \subseteq X - B \subseteq s - cl$ (X - A), then by Theorem 3.4, X - B is strongly g^*s -closed. Therefore, B is strongly g^*s -open.

Lemma 4.1. Let $A \subseteq X$ be a strongly g^*s -closed set. Then s - cl(A) - A is strongly g^*s - open.

Proof. Let F be a gs-closed set such that $F \subseteq (s-cl(A))-A$. Since A is strongly g^*s -closed, then by Corollary 3.1, $F = \phi$. Therefore, $\phi \subseteq s-\operatorname{int}(s-cl(A)-A)$. Hence, by Theorem 4.1, s-cl(A)-A is strongly g^*s -open.

STRONGLY GENERALIZED STAR SEMI-TOPOLOGICAL OPERATIONS

Definition 5.1. In a space (X,τ) , if $A \subseteq X$, then the strongly generalized star semi-closure (briefly, *strongly* $g^*s - cl(A)$) and the strongly generalized star semi-interior (briefly, *strongly* $g^*s - \text{int}(A)$) of A are defined by respectively.

strongly
$$g^*s - cl(A) = \bigcap_{i=1}^{\infty} \{F_i : A \subseteq F_i, F_i \in strongly \ G^*SC(X, \tau)\},$$

strongly $g^*s - int(A) = \bigcup_{i=1}^{\infty} \{G_i : G_i \subseteq A, G_i \in strongly \ G^*SO(X, \tau)\}.$

According to the above definition, it is easy to see that $A \subseteq strongly \ g^*s - cl(A)$ and $strongly \ g^*s - int(A) \subseteq A$.

Proposition 5.1. For a topological space (X, τ) , then:

- (i) If $A \subseteq F$ and F is strongly g^*s -closed, then $A \subseteq strongly g^*s cl(A) \subseteq F$.
- (ii) If $G \subseteq A$ and G is strongly g^*s -open, then $G \subseteq strongly g^*s int(A) \subseteq A$. **Proof.** Obvious.

Proposition 5.2. For a space (X, τ) , if A is a subset of X, then the following statements are hold:

- (i) If A is strongly g^*s -closed, then A= strongly g^*s cl(A).
- (ii) If A is strongly g^*s -open, then $A = strongly \ g^*s int(A)$. **Proof.** Obvious.

Lemma 5.1. For a space (X,τ) , if A is a subset of X, then

- (i) $strongly \ g^*s cl(X A) = X strongly \ g^*s int(A)$,
- (ii) $strongly g^*s int(X A) = X strongly g^*s cl(A)$.

Proof. Obvious from Definition 5.1.

Research Article

Lemma 5.2. If A is a subset of a space (X,τ) , then $x \in strongly \ g^*s - \operatorname{int}(A)$ if and only if there exists a strongly g^*s -open set W such that $x \in W \subset A$.

Proof. The necessity. Let $x \in strongly \ g^*s - int(A)$. Then, $x \in \bigcup_{i=1} W_i, W_i$ is strongly g^*s -open, $W_i \subseteq A$.

Therefore there exists at least W contains x such that $x \in W \subseteq \bigcup_{i=1} W_i = strongly \ g *-int(A) \subseteq A$. Hence, $x \in W \subseteq A$.

The sufficiency. Assume that there exists a strongly g^*s - open set W such that $x \in W \subseteq A$. Then, $X - A \subseteq X - W$. By Lemma 5.1, $x \notin X - strongly$ $g^*s - cl(X - A)$. Hence, by Lemma 5.1, $x \notin strongly$ $g^*s - int(A)$. Therefore, $x \in strongly$ $g^*s - int(A)$.

Lemma 5.3. If A is a subset of a space (X, τ) , then $x \in strongly \ g^*s - cl(A)$ if and only if for each $G \in strongly \ G^*SO(X, \tau)$ containing $x, G \cap A \neq \phi$.

Proof. The necessity. Let $x \notin strongly \ g^*s - cl \ (A)$. Then, $x \in X - strongly \ g^*s - cl \ (A)$, hence by Lemma 5.1, $x \in strongly \ g^*s - int(X - A)$. Then, by Lemma 5.2, there exists a strongly g^*s -open set G such that $x \in G \subseteq X - A$. So, $A \cap G = \phi$.

The sufficiency. Assume that there exists a strongly g^*s - open set G containing x such that $A \cap G = \phi$. Then, $A \subseteq X$ -G which is a strongly g^*s -closed set. Therefore, by Proposition 5.1, $A \subseteq strongly \ g^*s - cl \ (A) \subseteq X - G$, but $x \not\in X - G$. Hence, $x \not\in strongly \ g^*s - cl \ (A)$.

Remark 5.1. For a space (X, τ) , if $A \subset X$, we have:

 $\operatorname{int}(A) \subseteq \operatorname{s-int}(A) \subseteq \operatorname{strongly} \ g^*s - \operatorname{int}(A) \subseteq A \subseteq s - cl_*(A) \subseteq s - cl^*(A) \subseteq \operatorname{strongly} \ g^*s - cl(A) \subseteq \operatorname{s-cl}(A) \subseteq \operatorname{s-cl}(A) \subseteq \operatorname{cl}(A).$

The converse of the above remark is not true as is shown by (Crossly and Hildebrand, 1971; Maki *et al.*, 1996) and the following example.

Example 5.1. Let $X = \{a,b,c,d\}$ with topologies $T_1 = \{X, \phi, \{c,d\}\}, T_2 = \{X, \phi, \{a\}, \{b,c\}, \{a,b,c\}\}.$

- (i) If $A = \{b,c\}$ of X on \mathcal{T}_1 , then s cl(A) = X but strongly $g^*s cl(A) = \{a,b,c\}$. Therefore, $s cl(A) \neq s$ trongly $g^*s cl(A)$.
- (ii) Also, if B= {b} of X on \mathcal{T}_2 , then $s-cl^*(B)$ =B but strongly g^*s -cl (B) = {b, c}. Therefore, strongly g^*s -cl (B) $\not\subset s-cl^*(B)$.
- (iii) Further, if C={c} of X on \mathcal{T}_1 , then s-int (C)= ϕ but strongly- g^*s -int(C)=C. Therefore, strongly- g^*s -int(C) $\not\subset$ s-int (C).

Definition 5.2. Let (X, τ) be a space and $A \subseteq X$. Then, the strongly generalized star semi-boundary of A (briefly, $strongly \ g^*s - b(A)$) is defined by $strongly \ g^*s - b(A) = strongly \ g^*s - cl(A) \cap strongly \ g^*s - cl(X - A)$.

Theorem 5.1. In a space (X, τ) , if A and B are two subsets of X, then the following statements are hold:

(i) $strongly g^*s - b(A) = strongly g^*s - b(X - A)$.

Research Article

- (ii) $strongly g^*s b(A) = strongly g^*s cl(A) strongly g^*s int(A)$,
- (iii) strongly $g^*s b(A) \cap strongly g^*s int(A) = \phi$,
- (iv) $strongly \ g^*s b(A) \cup strongly \ g^*s int(A) = strongly \ g^*s cl(A)$.

Definition 5.3. If (X, τ) is a space and $A \subseteq X$, then the set X – strongly g^*s – cl(A) is called the strongly generalized star semi-exterior of A and is denoted by strongly g^*s – ext(A).

Each point $P \in X$ is called a strongly g^*s -exterior point of A, if it is strongly g^*s -interior point of X-A. **Theorem 5.2.** For a space (X, τ) and A be a subset of X, the following statements are hold:

- (i) $strongly g^*s ext(A) = strongly g^*s ext(X A)$,
- (ii) strongly $g^*s ext(A) \cap strongly g^*s b(A) = \emptyset$,
- (iii) strongly $g^*s ext(A) \cup strongly g^*s b(A) = strongly g^*s cl(X A)$.

Proof. (i) By Definition 5.3, strongly $g^*s - ext(A) = X - strongly$ $g^*s - cl(A)$, hence by Lemma 5.1, strongly $g^*s - ext(A) = strongly$ $g^*s - int(X - A)$.

(ii) Obvious.

Since, strongly $g^*s - ext(A) \cup strongly \ g^*s - b(A) =$ strongly $g^*s - int(X - A) \cup strongly \ g^*s - b(X - A) = strongly \ g^*s - cl(X - A)$.

STRONGLY SEMI STAR $T_{1/2}$ SPACES

Definition 6.1. A topological space X is said to be:

- (1) strongly semi -star- $T_{1/2}$ (briefly, $st.semi^* T_{1/2}$) if every strongly g^*s -closed set in X is semi -closed,
- (2) strongly semi-star- T_p (briefly, $st.semi^* T_p$) if every strongly g^*s -closed set in X is closed.

Example 6.1. Let $X = \{a, b, c\}$ with topologies $\tau_1 = \{X, \phi, \{a\}\}$ and $\tau_2 = \{X, \phi, \{a\}, \{a, b\}, \{a, c\}\}$. Then (X, τ_1) is $\textit{st.semi}^* - T_{1/2}$ and (X, τ_2) is $\textit{st.semi}^* - T_p$.

Lemma 6.1. For a space (X, τ) , the following are hold:

- (1) Every $st.semi^* T_p$ (resp. semi- T_p , semi- T_b , T_b) space is $st.semi^* T_{1/2}$.
- (2) Every T_b space is *st.semi* $^* T_p$.

Proof. (1) Let A be a strongly g^*s -closed subset of X. Since, (X,τ) is $st.semi^* - T_p$, then A is closed. Therefore, A is semi-closed. Hence (X,τ) is $st.semi^* - T_{1/2}$.

(2) Let A be a strongly g * s -closed subset of X. Then, A is gs-closed. Since, (X,τ) is T_b , then A is closed. Hence, (X,τ) is $st.semi^* - T_p$.

The converses of the above theorem need not be true as may be seen by the following example. **Example 6.2.** Let $X = \{a,b,c\}$ with the following topologies:

Research Article

(1)
$$\tau_2 = \{X, \phi, \{a\}, \{a,b\}\},\$$

(2)
$$\tau_3 = \{X, \phi, \{a,b\}, \{c\}\}.$$

Then, from Example 6.1, (X,τ_1) is a $st.semi^*-T_{\frac{1}{2}}$ space but it is not $st.semi^*-T_p$ (resp. semi- T_p , T_b). Further, (X,τ_2) is $st.semi^*-T_{\frac{1}{2}}$ but it is not semi- T_b . Also, (X,τ_3) is a $st.semi^*-T_p$ - space but it is not T_b .

Remark 6.1. (1) st. semi- $T_{\frac{1}{2}}$ and st.semi^{*} - T_p spaces are independent,

- (2) semi $T_{\frac{1}{2}}$ and st.semi* T_p spaces are independent,
- (3) $st.semi^* T_{\frac{1}{2}}$ and T_d spaces are independent,
- (4) st. semi- $T_{\frac{1}{2}}$ and st. semi^{*} $-T_{\frac{1}{2}}$ spaces are independent.

Example 6.3 Let $X = \{a, b, c\}$ with the following topologies:

- (1) $\tau_4 = \{X, \phi, \{a\}, \{b\}, \{a,b\}\},\$
- (2) $au_5 = \{X, \phi, \{a,b\}\}\$. Then (1) From Example 6.2, (X, τ_3) is a st.semi $^* T_p$ space but it is not st. semi $T_{\frac{1}{2}}$ and (X, τ_2) is st. semi $T_{\frac{1}{2}}$ but it is not st.semi $^* T_p$.
- (2) Also, from Example 6.2, (X, τ_3) is $st.semi^* T_p$ but it is not semi $-T_{\frac{1}{2}}$ and (X, τ_4) is semi $-T_{\frac{1}{2}}$ but it is not $st.semi^* T_p$.
- (3) Further, from Example 6.2, (X, τ_2) is $st.semi^* T_1$ but it is not T_d and (X, τ_5) is T_d but it is not $st.semi^* T_1$.
- (4) Furthermore, from Example 6.2, (X,τ_3) is $st.semi^* T_{\frac{1}{2}}$ but it is not st. semi- $T_{\frac{1}{2}}$ and (X,τ_5) is st. semi- $T_{\frac{1}{2}}$ but it is not $st.semi^* T_{\frac{1}{2}}$.

Remark 6.2. We can summarize the following diagram by using (Devi, 1994; El-Maghrabi and Nasef, 2008; Levine, 1970; Veera Kumar, 2001) and the above results.

Research Article

Theorem 6.1. For a topological space (X, τ) , the following statements are equivalent:

- (i) (X,τ) is $st.semi^* T_{1/2}$,
- (ii) Every singleton of X is either gs-closed or semi-open.

Proof.(i) \rightarrow (ii). Let $x \in X$ and $\{x\}$ be not gs-closed. Then by Theorem 3.3, $X - \{x\}$ is strongly g^*s -closed. Hence by hypothesis, $X - \{x\}$ is semi - closed. Therefore, $\{x\}$ is semi - open.

(ii) \rightarrow (i). Let $A \subseteq X$ be a strongly g^*s -closed set and $x \in s - cl(A)$, we need to show that $x \in A$. For consider the following two cases:

case (1). The set $\{x\}$ is gs-closed. Then, if $x \notin A$, there exists a gs-closed set in (s-cl(A))-A. So, by Corollary 3.1, $x \in A$.

case (2). The set $\{x\}$ is semi - open. Since, $x \in \text{s-cl }(A)$, then $\{x\} \cap A \neq \emptyset$. Thus, $x \in A$. Hence, in both cases, $x \in A$. This show that s-cl $(A) \subseteq A$. So, A is semi -closed.

Theorem 6.2. For a topological space (X, τ) , the following statements are equivalent:

- (i) (X,τ) is $st.semi^* T_{1/2}$,
- (ii) Every residual singleton of X is gs- closed.

(iii)

Proof. (i) \rightarrow (ii). By Theorem 6.1, every singleton set of X is semi - open or gs- closed and since, a non void residual set can not be semi - open at the same time, then every residual singleton set of X is gs-closed.

(ii) \rightarrow (i). Since, every singleton set is either semi-open or residual, then by hypothesis, every singleton set of X is either semi-open or gs- closed. Hence by Theorem 6.1, X is $st.semi^* - T_{1/2}$.

Theorem 6.3. A space (X, τ) is $st.semi^* - T_{\frac{1}{2}}$ if and only if $SO(X, \tau) = strongly$ $G^*SO(X, \tau)$.

Proof. Necessity. Let (X, τ) be a $st.semi^* - T_{1/2}$ space and $A \in strongly \ G^*SO(X, \tau)$. Then, X - A is strongly g^*s -closed. Hence by hypothesis, X - A is semi -closed. Hence, $A \subseteq SO(X, \tau)$.

Research Article

Therefore, $strongly \ G^*SO(X,\tau) \subseteq SO(X,\tau)$. Also, By Remark 4.2, $SO(X,\tau) = strongly \ G^*SO(X,\tau)$.

Sufficiency. Let $SO(X,\tau) = strongly \ G^*SO(X,\tau)$ and A be a strongly g^*s -closed set. Then $X-A \in strongly \ G^*SO(X,\tau)$, hence by hypothesis, $X-A \in SO(X,\tau)$. Therefore, A is semi-closed.

Corollary 6.1. A space (X, τ) is $st.semi^* - T_p$ if and only if $\tau = strongly \ G^*SO(X, \tau)$.

Definition 6.2. A mapping $f:(X,\tau)\to (Y,\sigma)$ is said to be:

- (1) strongly generalized star semi-continuous (briefly, strongly g^*s -continuous) if $f^{-1}(V)$ is strongly g^*s -closed in (X, τ) , for every closed set V of (Y, σ) ,
- (2) strongly generalized star semi-irresolute (briefly, strongly g^*s -irresolute) if $f^{-1}(V)$ is strongly g^*s -closed in (X,τ) , for every strongly g^*s -closed V of (Y,σ) .

Theorem 6.4. Let $f:(X,\tau)\to (Y,\sigma)$ be strongly g^*s - continuous. Then, f is semi - continuous, if (X,τ) is $st.semi^*-T_{1/2}$.

Proof. Let $V \subseteq Y$ be a closed set. Then $f^{-1}(V)$ is strongly g^*s - closed in X. But (X,τ) is $st.semi^* - T_{1/2}$, hence, $f^{-1}(V)$ is semi - closed. Therefore, f is semi-continuous.

Theorem 6.5. Let $f:(X,\tau)\to (Y,\sigma)$ be strongly g^*s -irresolute. Then, f is irresolute, if (X,τ) is $st.semi^*-T_{1/2}$.

Proof. Obvious.

Theorem 6.6. Let $f:(X,\tau)\to (Y,\sigma)$ be onto , pre semi - closed and strongly g^*s -irresolute mappings . Then (Y,σ) is $st.semi^*-T_{1/2}$, if (X,τ) is $st.semi^*-T_{1/2}$.

Proof. Let $V \subseteq Y$ be a strongly g^*s -closed set. Then $f^{-1}(V)$ is strongly g^*s -closed in X. But (X, τ) is $st.semi^* - T_{1/2}$, hence $f^{-1}(V)$ is semi-closed. Therefore $f(f^{-1}(V)) = V$ is semi-closed in Y.

Corollary 6.2. Let $f:(X,\tau)\to (Y,\sigma)$ be onto, closed and strongly g^*s -irresolute mappings. Then (Y,σ) is $st.semi^*-T_p$, if (X,τ) is $st.semi^*-T_p$.

REFERENCES

Andrijevic D (1986). Semi-preopen sets. Matematički Vesnik 38(1) 24-32.

Arya SP and TM (1990). Nour TM, Characterizations of s-normal spaces. *Indian Journal of Pure Applied Mathematics* **21**(8) 717-719.

Bhattactaryya P and Lahiri BK (1987). Semi – generalized closed sets in topological spaces. *Indian Journal of Mathematics* 29 375-382.

Crossly SG and Hildebrand SK (1971). Semi – closure. Texas Journal of Science (3+4) 99-119.

Research Article

Crossly SG and Hildebrand SK (1974). Semi – topological Properties. Fundamenta Mathematicae 74 233-254.

Devi R (1994). Studies on generalizations of closed maps and homeomorphism in topological spaces. *Ph.D.Thesis, Bharathiar University, Coimbatore*.

Dunham W (1982). A new closure operator for non T₁- topologies. *Kyungpook Mathematical Journal* 22 55-60.

El-Maghrabi AI and Nasef AA (2008). Between semi-closed and gs-closed sets. *International Junior Golf Tour* **1**(2) 1-9.

Levine N (1961). On the commutativity of the closure and the interior operator in topological spaces. *American Mathematical Monthly* 68 474-477.

Levine N (1963). Semi – open and semi – continuity in topological space. *American Mathematical Monthly* $70\ 36-41$.

Levine N (1970). Generalized closed sets in topology. *Rendiconti del Circolo Matematico di Palermo* 19(2) 89-96.

Maki H, Balachandran K and Devi R (1996). Remarks on semi-generalized closed sets and generalized semi – closed sets. *Kyungpook Mathematical Journal* 36 155-163.

Mashhour AS, Abd El-Monsef ME and EL Deeb SN (1982). On precontinuous and weak precontinuous mappings. *Proceedings of Mathematical-Physico Society Egypt* 53 47-53.

Singal MK and Singal RR (1968). Almost continuous mappings. *Yokohama Mathematical Journal* **16** 63-73.

Sundaram P, Maki H and Balachandran K (1991). Semi generalized continuous maps and semi $-T_{\frac{1}{2}}$ spaces. *Bulletin of Fukuoka University of Education. Part III* **40** 33-40.

Veera Kumar MKRS (2001). Between closed sets and g-closed. *Department of Mathematics, Faculty of Science, Kochi University* **21** 1-19.