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ABSTRACT 

This paper reports a continuous-time autonomous dynamical system. Some basic dynamical properties, 
such as Lyapunov exponents, Poincare mapping, fractal dimension and chaotic behavior of this system 

are studies. Furthermore, we will investigate an external force that is applied on Stretch-Twist-Fold Flow 

and analyze the behavior of control parameter with theoretical details.  
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INTRODUCTION 

The distinction between slow and fast dynamos was first drawn by Vainshtein & Zeldovich (1972) in this 

research; we describe the stretch-twist-fold (STF) fast dynamo, which is the archetype of the elementary 
models of the process. Basically, stretch-twist-fold is applied in fluid mechanics in aerospace. In space, 

any fluid can be de tracked easily so a magnetic field is required to compel the fluid to be in the same 

orbit and this method is called STF system. A modified chaotic system is proposed in this paper. It is a 
three-dimensional autonomous system which relies on two multipliers and one quadratic term to 

introduce the nonlinearity necessary for folding trajectories. In this paper, we will investigate an external 

force that is applied on this system. Jacobian matrix will be able to show saddle point and saddle-focus 

point. The Lyapunov exponent shows the stable and unstable position of this system. Furthermore, we 
will describe the fractal dimension and add the one controlling parameter that shows the chaotic behavior 

of this system. 

 

STRETCH-TWIST-FOLD-FLOW (STF) 

The STF flow is defined as (Bao and Yang, 2011): 
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Where 0.1, 1    are positive real parameters and related to the ratios of intensities of the stretch, 

twist and fold ingredients of the flow. If we apply an external force acos (30
0
) then the system will be 

define as: 
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First, we will discuss equilibria of this nonlinear system.

 
Let  
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The system has three equlibria, which are respectively described as follows: 

0(0, 0, 0), E1(x1, y1, z1), E2(x2, y2, z2) 

We operate above these nonlinear algebraic equations and obtain 

0(0, 0, 0), E1 (0.087, 1, 0), E2 (-0.087,-1, 0) 
For equilibrium 0(0, 0, 0), system (2) are linearized, Jacobian matrix is defined as 
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To gain its eigenvalues, we let 

0 0I J    

These eigenvalues that corresponding to equilibrium 0(0, 0, 0) are respectively obtained as follows: 

1 2 30.1, 0, 0.1       

Here 3  is a positive real number, 1  is a negative real number. So, this equilibria point 0(0, 0, 0) is 

stable. 
Next, linearizing the system (2) about the other equilibria such as E1, E2 yields the following 

characteristic operation. 

For equilibrium points E1, has a Jacobian matrix equal to 
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We let 

1 0I J    

These eigenvalues corresponding to the equilibrium point E1(x1, y1, z1) are  

1 2 38.1050, 6.0937, 2.0113       

Here 1  is a negative real number, 2  and 3  are two positive real number. 

The equilibria point E1 is a saddle-focus point; this equilibrium point is unstable. 
For equilibria point E2: 
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We let 

2 0I J    

These eigenvalues of E2 are 

1 2 38.0851, 6.0938, 1.9914        

Result show that 1  is a positive real number, 2  and 3  are two negative numbers. 

The equilibria point E2 is also a saddle-focus point, this equilibria point is unstable. 

The above brief analyses show that the three equilibrium points of the nonlinear system are two saddle 
focus-nodes. Using MATLAB program, the numerical simulation have been completed. The nonlinear 

system is shown in figure 1, 2 and 3.  
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In dynamical system (2), a volume element 0V  is apparently contracted by the flow into a volume element  

0

ptV e  in time t. It means that each volume containing the trajectory of this dynamical system shrinks to 

zero as t  . So, all this dynamical system orbits are eventually confined to a specific subset that has 

zero volume (Lu et al., 2002). 
. As is well known, the Lyapunov exponents measure the exponential rates of divergence or convergence 
of nearby trajectories in phase space, according to the detailed numerical as well as theoretical analysis, 

the largest value of positive Lyapunov exponents of this chaotic system is obtained as 

1 8.09L   

It is related to the expanding nature of different direction in phase space  

Another one Lyapunov exponent is 

2 0L   

It is related to the critical nature between the expanding and the contracting nature of different direction in 

phase space while negative Lyapunov exponent is  

3 8.11L    

It is related to the contracting nature of different direction in phase space. 

The Lyapunov dimension of this nonlinear system, it is described as  
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The fractal nature of an attractor does not merely imply non-periodic orbits, it also causes nearby 
trajectories to diverge. They soon diverge and follow totally different paths in this system (Wolf et al., 

1985). Therefore, there is really chaos in this nonlinear system. 

 

CONTROLLER PARAMETER 

In this section we will add controller parameter in z-dimension. The autonomous differential equations of 

its controlled system are expressed as 
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In this system, e  is the parameter of control, the value of it can be changed within a certain range. 

When the parameter e  is changed, the chaos behavior of this system can effectively be controlled. So it is 

a controller. 

Let 0.01,e    

The system evolves into partial but is still bounded in this time. 

Let 0.02,e   

The system evolves into doubling bifurcations. 

Let 0.03,e   

The system evolves into partial but still bounded in this time. 

Let 0.04,e   

The system evolves into a period-doubling bifurcation. 

In the controller, one can see when e large enough, chaos is going to disappear; when e  is small 

enough, a complete chaos going to appears. So e  is an important parameter to control chaos in the 

nonlinear-system (Chong et al., 2004; and Jinhu et al., 2002). 
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  Figure 1: x,z-direction ( 0.01,e  )                         
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                                                  Figure 2: x,z-direction ( 0.02,e  ) 
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Figure 3: x, z-direction ( 0.03,e  )                        
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                                                   Figure 4: x, z-direction ( 0.04,e  ) 
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CONCLUSION 

In this system, there are abundant and complex dynamical behaviors. We successfully applied an external 

force on this dynamical system that shown the stability and unstability by using Jacobian matrix. Control 
parameter is able to show the chaos in this nonlinear system. This dynamical system and their forming 

mechanism need further to study and explore. Their topological structure should be completely and 

thoroughly investigated, it is expecting that more detailed theory analysis and simulation investigation 
will be provided elsewhere a great deal of achievements will be obtained in the near future. 

 

ACKNOWLEDGMENT 

The first author is very thankful to all of his co-authors and especially to Professor Shu Yonglu for 
advising and giving the opportunity to conduct this research and also very much thankful to Sustainable 

Energy Technologies Centre, King Saud University for funding the research. 

 

REFERENCES 

Jianghong Bao, Qigui Yang (2011). A new method to find homoclinic and heteroclinic orbits. 

Applied Mathematics and Computation  217(14) 6526–6540.  

Lu J, Chen G and Zhang S (2002). Dynamical analysis of a new chaotic attractor. International 

Journal of Bifurcation and Chaos in Applied Sciences and Engineering 12(5) 1001-1015.  

Wolf A, Swift JB, Swinney HL and Vastano JA(1985). Determining Lyapunov exponents from a time 

series. Physica D: Nonlinear Phenomena 16(3) 285–317. 

Liu Chong, Liu Tao, Liu  Ling, Liu  Kai (2004). A new chaotic attractor. Chaos, Solitons & Fractals 

22(5) 1031–1038. 

Lu Jinhu, Chen Guanrong, Zhang Suochun (2002). The compound structure of a new chaotic 

attractor. Chaos, Solitons & Fractals 14(5) 669–672. 
 

 


