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ABSTRACT 

The basic equations for the itinerant oscillator model for fluids proposed by Sears and modified by 

Nakahara and Takahashi (1966), and Damle et al., (1968) are solved using the method of Green’s 

functions solutions. Supposing the forces of interaction operating among the molecules to be either 

exponential or oscillatory, we have found the solutions of the equations proposed by Sears (1965). 

The two solutions for the value of  tR0 , the position of the moving molecule, differ in the sense that in 

one case when the force is exponential the value of  tR0  depends on well known parameters, whereas 

when the force is oscillatory, the value of modified  tR0  contains some imaginary terms. Under the 

condition 0tt  , the two solutions are practically identical. 

                                 

INTRODUCTION 

Sears (1965) had proposed the itinerant oscillator model of liquids in which he introduced the concept of 

centre of oscillation defined in such a way that the motion of an atom relative to its centre represents its 

thermal oscillation, whereas the motion of the centre of oscillation represents the diffuse motion of the 

atom. The centre of oscillation was defined as the average position of the central atom. The equation of 

motion of the central atom was written in terms of 0  which is the frequency of oscillation of the central 

atom,   as a friction constant, and   t  as the random force whose average may be zero. 

It was later pointed out (Nakahara et al., 1966)
 
that Sear’s treatment was inconsistent with the well 

accepted second fluctuation-dissipation theorem. Damle et al., (1968) pointed out the error in the 

treatment of Nakahara and Takahashi (1966), and also brought out a striking feature of Sear’s model: it 

does not obey the third law of Newton; it violates the equality of action and reaction. The Sear’s model 

and other models were re-examined (Cardi et al., 1971) and various ways were proposed to overcome the 

deficiencies. 

However, before we develop our ideas on such a model, it will be appropriate to understand (Hill 1963, 

Wyllie 1971) that with each molecule in a substance is associated a least polyhedron whose faces are the 

normal bisectors of the lines joining the centre of that molecule to the centers of a number of neighboring 

molecules. These neighbors at any moment form a cage, and the motion of each molecule is dominated by 

its interaction with the members of its cage. In a solid the membership of a cage is constant for periods 

very long compared with the principle periods of oscillation of the translation and rotation of each 

molecule. In a liquid, the following points are to be carefully noted. 

 The membership of the neighboring cages is frequently exchanged. 
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 Each cage has titubant diffusive motion corresponding to the fluidity of the surrounding medium. 

This way of looking at the structure and motion of a liquid gives rise to what is known as the itinerant 

oscillator model of molecular motion in which each molecule is assumed to make a damped oscillation 

about an equilibrium position which itself executes a diffuse motion. The model may be applied to 

angular (Hill, 1963) as well as to linear (Sears, 1965, 1967) motion of the molecule. 

Itinerant oscillator model has also been used to study the contribution of particle inertial effects to 

resonance in ferrofluids
 (
Fannin and Coffey, 1995). Similarly non-Fermi liquid nature of the normal state 

of itinerant-electron ferromagnets has been studied (Pfleiderer et al., 2001). 

A review article (Coffey et al., 2003)
 
on itinerant oscillator models of fluids gives extensive details on 

how the model can be applied to different types of fluids. Many details are given as to how to study 

different types of problems, and a large number of references are given for further reading and 

understanding of the subject matter. In most of the cases small oscillation harmonic potential 

approximation is used, and in some cases attempts were made to generalize the model to include 

anharmonic potential. Another application of the model is the relaxation of ferrofluids (Shliomis, 1974). 

Now the forces  tA  and  tB  used by Sears (1965, 1967) are stationary stochastic forces. Similarly 

different types of forces have been used by others (Coffey et al., 2003) also in studying different 

problems. In some cases the forces  t  and  t  are random forces whose average could be zero. 

In the calculations presented in this manuscript, we have used simple oscillating forces in one set of 

calculations, and forces exponentially decreasing in the other set of calculations. This is based on the 

assumption that in a system enclosed in a box a molecule interacts with all the other molecules and the 

forces of interaction should be either oscillating with time or decreasing with time. Green’s function 

solutions have been used to study and solve the equations of motion. 

 

THEORY  
The equations of motion used by Sears as per the model proposed by him are, 

                          ttRtRtRtR  0

2

000     ........................................................ (1) 

                     ttRtR      ......................................................................................... (2) 

Where 0R   is the position of the moving molecule and R that of its temporary centre of oscillation, and 

  and   are friction constants, 0  is the frequency of oscillation. In general   . The forces  t  

and  t  used by Sears are stationary stochastic forces. But here we will use simple oscillating forces in 

one set of calculations, and forces exponentially decreasing with time in the other set of calculations. This 
is based on the assumption that in a system enclosed in a box a molecule interacts with all the other 

molecules and the forces of interaction should be either oscillating with time or decreasing with time. 

Now equations (1) and (2) can be solved by giving suitable values to  t  and  t . First we consider 

forces that decrease exponentially with time such that we can write, 

                 
 

  t

t

et

et













0

0
    ............................................................................................ (3) 

Equations (1) and (2) can be written in the form, 

                          tftRetRtRtR t   2

000

2

000     .................................... (4) 

                     tetRtR   0
      ............................................................................... (5) 
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The mathematical solution of Equation (4) in terms of Green’s functions is given by (Byron and Fuller, 

1970), 

                           tdtfttGtQRtPRtR  




,02010
 .................................................... (6) 

Where P and Q are to be chosen to satisfy the boundary conditions, and 
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                tRetf t 2

00   
 

Green’s function  ttG , can be expressed by the integral, 

               
 
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Where 
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Now for tt  , we can evaluate the integral, 
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                          =
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Where 

           
iKek  , diKedk i  

And   lies between 0 and  . 

Now let K , the radius of the contour, become very large. Evaluating the integral by the residue theorem 

and inserting the values of 1k  and 2k we get, 
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As K , the first integral in Equation (10) on the right hand side will become just  ttG , of Equation 

(8). Thus we can write, 
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Now the second term in Equation (13) vanishes as K by Jordan’s Lema. Hence we get, 

                          
 
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But   0, ttG  when tt   

Thus in general we can write, 

                             
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Where  tt   is the Heaviside function? The general solution now becomes, 

                               
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 ....................  (16) 

Where 0t  is the time at which the initial conditions may be applied, i.e.,  tf   may be taken to be zero at 

times prior to 0t . 

The general solution to Equation (2) can be written in the form, 

                           
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Where 1C and 2C  are constants. 

Hence the value of  tf   can be written as, 
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Substituting the value of  tf  from Equation (18) in Equation (16), we get, 
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Where 321 ,, III and 4I  are the four integrals of Equation (19). On evaluating these integrals and 

substituting them in Equation (19), we get, 
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The 

value of  ,0 tR apart from depending upon the variable t , depends on a number of other quantities, like 

 ,,,0  and  . In fact, the variables   and  are of the same nature, and   and   are of the same 

nature.  Note that at 0tt  , Equation (21) gives, 

                        tQRtPRtR 02010    ............................................................................... (22) 

Which establishes the correctness of the solution given by Equation (21)? 

Next we shall consider the solutions of Equations (1) and (2) by assuming that the forces  t  and  t  

are oscillating, i.e. 
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Substituting for  t  and  t  in Equation (1) and (2), we get, 
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                            tiebtRtR   0)(   .............................................................................. (25) 

The general solution for Equation (25) is, 
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The Green’s function for Equation (24) is similar to one given in Equation (15). The general solution of 

Equation (24) is  

         
 

  
  tdtF

tte
tNRtMRtR

tt




 








sin2

02010
 ........................................... (27) 

Where M and N are to be chosen to satisfy the boundary conditions, and 
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Substituting the value of  tF   from Equation (28) in Equation (27), we get, 
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On evaluating the integrals in Equation (29), we get 
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The value of  tR0  depends on the time variable t , and four other variables  ,,0  and   along with 

.  the variables  and   are of the same nature. 

Again at 0tt  , Equation (30) gives that, 

             tNRtMRtR 02010    .................................................................................... (31) 

Which establishes the correctness of the solution given in Equation (31)? The form of  tR0  in Equation 

(31) is the same as in Equation (22) except for the values of the co-efficient P and Q in Equation (22) and 

M and N in Equation (31). These coefficients can be chosen arbitrarily. The complete solutions giving the 

values of  tR0 are given by EQUATION (21) when the forces  t and  t  are exponential, and then 

by Equation (30) when the forces are oscillatory. The values of  tR01  and  tR02  are given by Equation 

(7), and these values show that the exponential and oscillatory motions exist simultaneously. The phase 

difference between the motions represented by  tR01  and  tR02  is
090 . 

 

RESULTS AND DISCUSSION 

To know how  tR0  varies with t  we have to use Equations (22), (31) and (7). Apart from P, Q and M, N 

which may be treated as fixed, we need to know the values of the friction constant   and the frequency

0 . We can use the values used earlier (Cardi et al., 1970) such that, 

               
1131006.1  S  and 

2262

0 1016.0  S  

Equations (7) show that for   00,0 01  tRt  and   1002 tR .This indicates that if  001 tR  

corresponds to the equilibrium position in the oscillation, and then  002 tR  corresponds to the extreme 

position of the oscillation. But at   0, 01  tRt , and   002 tR , and this means that after a 

long time, the distinction between the position of equilibrium and the extreme position is lost, and the 

whole system will be in a state of equilibrium oscillating around the position 01R . The magnitudes of 

oscillation may be determined by P and Q. This means that even when the applied force is exponential, 
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the oscillatory character predominates due to the form and nature of the Equations (1) and (2). Exactly 

similar results will be obtained from Equation (31). Therefore, it can be stated that the Green’s function of 

solving the Equations (1) and (2) re-confirms that the itinerant oscillator model can be used for fluids. 
 

 

The graphs have been drawn for  and  for different values of  and . All the graphs 
clearly indicate that under oscillatory damping forces, the displacement from the position of equilibrium 

dies as the time increases. 

 

   tRtR 0201 ,  tR0 
2

0
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