Research Article

ON SLIGHTLY P-CONTINUOUS MULTIFUNCTIONS

*R. Selvi¹ and P. Thangavelu²

¹Department of Mathematics, Sriparasakthi College for Women, Courtallam, India ²Department of Mathematics, Aditanar College, Tiruchendur-628216, India *Author for Correspondence

ABSTRACT

The concepts of p-continuity between topological spaces are introduced by Thangavelu and Rao. The purpose of this paper is to introduce upper and lower slightly p-continuous multifunctions and investigate their relationships with other multifunctions.

INTRODUCTION AND PRELIMINARIES

In this chapter the concepts of slightly p-continuous and slightly q-continuous multifunctions are introduced and their properties are investigated.

Definitions

Definition 1.1:

Let A be a subset of a topological space X, then A is called

- a p-set[2] if $cl(int(A)) \subseteq int(cl(A))$
- α -open[1] if $A \subseteq int(cl(int(A)))$ and α -closed if $cl(int(cl(A))) \subseteq A$

Definition 1.2:

A multifunction $F \otimes X$, $\tau) \to (Y, \sigma)$ is said to be upper p-continuous on X if for every open set $x \in X$, for every V in Y containing F(x) there is a p-set U in X such that $x \in U$ and $F(U) \subseteq V$. Definition 1.3:

A multifunction $F: (X, \tau) \to (Y, \sigma)$ is said to be lower p-continuous on X if for every $x \in X$ if for every open set V in Y with $V \cap F(x) \neq \emptyset$ there is a p-set U such that $x \in U$ and $F(u) \cap V \neq \emptyset$ for every $u \in U$. Definition 1.4:

A multifunction $F: X \to Y$ is said to be weakly injective if for any two subsets A_1 and A_2 of X, $F(A_1) \cap F(A_2) \neq \emptyset \Rightarrow A_1 \cap A_2 \neq \emptyset$. A multifunction $F: X \to Y$ is said to be weakly bijective if it is both weakly injective and weakly surjective.

Lemma 1.5:

Let a multifunction $F: X \to Y$ is weakly surjective. Then for any subset A of $X Y \setminus F(A) \subseteq F(X \setminus A)$.

Proof: Let $y \in Y \setminus F(A)$. Then $y \in Y$ and $y \notin F(x)$ for every $x \in A$. Since F is weakly surjective there is a subset B of X such that F(B) = Y that implies $y \in F(b)$ for some $b \in B$. If $b \in A$ then $F(b) \subseteq F(A)$ so that $y \in F(A)$ contradicting $y \in Y \setminus F(A)$. Therefore b cannot lie in A. Thus $b \in B \setminus A$. This shows that $Y \setminus F(A) \subseteq F(B \setminus A) \subseteq F(X \setminus A)$.

Lemma 1.6:

Let A multifunction F: $X \to Y$ is weakly injective. Then for any subset A of X Y\F (A) \supseteq F (X\A). Moreover if F: $X \to Y$ is weakly bijective then for any subset A of X, Y\F (A) = F (X\A).

Proof: Let $y \in F(X \setminus A)$. Then $y \in F(x)$ for some $x \in X \setminus A$ Clearly $y \in Y$. Suppose $y \in F(A)$. Then $y \in F(a)$ for some $a \in A$. Therefore $F(x) \cap F(a) \neq \emptyset$. Since F is weakly injective, by Definition 1.4 $\{x\} \cap \{a\} \neq \emptyset$ that implies x=a. This is absurd as $x \notin A$ and $a \in A$. This proves $Y \setminus F(A) \supseteq F(X \setminus A)$. Since F is weakly bijective the above arguments together with Lemma 1.5 imply that $Y \setminus F(A) = F(X \setminus A)$.

The following four Lemmas will be useful in sequel.

Lemma 1.7:

A subset B of X is a p-set if and only if $X \setminus B$ is also a p-set. [2]

Research Article

Lemma 1.8:

A subset B of X is a p-set in (X,τ) if and only if it is p-set in (X,τ^{α}) where τ^{α} is a topology of α -open sets in (X,τ) . [2]

Lemma 1.9:

The intersection of a p-set with a clopen set is again a p-set [2].

Lemma 1.10:

Let Y be a clopen set in X and $B \subseteq Y \subseteq X$. Then B is a p-set in X if and only if it is a p-set in Y. [2] *Upper Slightly P-Continuity*

In this section upper slightly p-continuous functions are introduced and characterized *Definition 2.1:*

A multifunction F: $(X,\tau) \to (Y,\sigma)$ is said to be upper slightly p-continuous on X if for every $V \in CO(Y,\sigma)$ containing F(x) there is a p-set U such that $x \in U$ and F(U) $\subseteq V$. An upper slightly p-continuous multifunction is upper slightly *m*-continuous if $m_X = p(X,\tau)$.

Theorem 2.3:

A multifunction $F: (X, \tau) \to (Y, \sigma)$ is upper slightly p-continuous on X if and only if for every x and for every clopen set B in Y with $B \cap F(x) = \emptyset$, there is a p-set U in X such that $x \in U$ and $F(U) \cap B = \emptyset$. Proof: Suppose $F: (X,\tau) \to (Y,\sigma)$ is upper slightly p-continuous on X. Let $x \in X$ and B be a clopen set in Y such that $B \cap F(x) = \emptyset$. Then $Y \setminus B$ is also clopen in Y with $F(x) \subseteq Y \setminus B$. Using Definition 2.1 there is a p-set U in X such that $x \in U$ and $F(U) \subseteq Y \setminus B$. This shows that $F(U) \cap B = \emptyset$. Conversely we assume that for every x and for every clopen set B in Y with $B \cap F(x) = \emptyset$, there is a p-set U in X such that $x \in U$ and $F(U) \cap B = \emptyset$. Fix $x \in X$ and a clopen set Y in Y with Y with Y in Y

Theorem 2.4:

Suppose $F: (X,\tau) \to (Y,\sigma)$ is weakly bijective. Then F is upper slightly p-continuous on X if and only if for every x and for every clopen set B in Y with $B \cap F(x) = \emptyset$, there is a p-set W in X such that $x \notin W$ and $B \subseteq F(W)$.

Proof: Suppose F is upper slightly p-continuous. Fix $x \in X$. Let B be a clopen set in Y and $B \cap F(x) = \emptyset$. Since F is upper p-continuous by using Theorem 2.3 there is a p-set U with $x \in U$ such that $F(U) \cap B = \emptyset$. This implies that $F(U) \subseteq Y \setminus B$ that implies $Y \setminus F(U) \supseteq B$. Since F is weakly bijective, $F(X \setminus U) = Y \setminus F(U) \supseteq B$. Taking $Y = X \setminus U$ and using Lemma 1.7 we see that W is a p-set with $X \notin W$ and $Y \in W$ and $Y \in W$. Conversely, let us assume that for every x and for every clopen set B in Y with $Y \in W$ and $Y \in W$ and $Y \in W$ and $Y \in W$ in X such that $Y \notin W$ and $Y \in W$ and

A multifunction F: $(X, \tau) \to (Y, \sigma)$ is upper slightly p-continuous on X if and only if F: $(X, \tau^{\alpha}) \to (Y, \sigma)$ is upper p-continuous;

Proof: Let $F:(X,\tau)\to (Y,\sigma)$ be upper p-continuous. Suppose $x\in X$ and V is a clopen set in Y with $F(x)\subseteq V$. Then by using Definition 2.1, there is a p-set U in (X,τ) such that $F(U)\subseteq V$. Again by using Lemma 1.8, U is also a p-set in (X,τ^{α}) . This proves that $F:(X,\tau^{\alpha})\to (Y,\sigma)$ is upper slightly p-continuous. Conversely we assume that $F:(X,\tau^{\alpha})\to (Y,\sigma)$ is upper slightly p-continuous. Let $x\in X$ and V be an open set in Y with $F(x)\subseteq V$. Then by using Definition 1.3, there is p-set U in (X,τ^{α}) such that $F(U)\subseteq V$. Again by using Lemma 1.8, U is also a p-set in (X,τ) . This proves that $F:(X,\tau)\to (Y,\sigma)$ is upper p-continuous. Thus (i) am proved.

Research Article

The next two Lemmas on p-sets are used to show that the restriction of an upper p-continuous multifunction to a clopen set is upper p-continuous.

Theorem 2.6:

If a multifunction $F: X \to Y$ is upper slightly p-continuous and X_0 is clopen, then the restriction $F/_{X_0}: X_0 \to Y$ is upper p-continuous.

Proof: Suppose a multifunction $F: X \to Y$ is upper slightly p-continuous on X. Fix $x \in X_0$ and V is a clopen set in Y with $F(x) \subseteq V$. Since F is upper slightly p-continuous on X, by Definition 2.1, there is a p-set U in X such that $F(U) \subseteq V$. Let $U_0 = U \cap X_0$. Then using Lemma 1.9, U_0 is a p-set in X. Again by using Lemma 1.10, U_0 is a p-set in X_0 . Since $F(U_0) \subseteq F(U) \subseteq V$, by Definition 2.1, F/X_0 is upper p-continuous at X and hence on X_0 .

Theorem 2.9:

A multifunction F: $X \rightarrow Y$ is upper slightly p-continuous on X if and only if for every x in X and for every clopen set V in Y with $x \in F^+(V)$ there is a p-set U in X such that $x \in U$ and $U \subseteq F^+(V)$.

Proof: We assume that F is upper slightly p-continuous on X. Let $x \in X$. Let V be a clopen set in Y such that $x \in F^+(V)$. This implies $F(x) \subseteq V$. Then by Definition 2.1 there is a p-set U in X such that $x \in U$ and $F(U) \subseteq V$. Now $u \in U \Rightarrow F(u) \subseteq V \Rightarrow u \in F^+(V)$. This proves that $U \subseteq F^+(V)$. Conversely we assume that for every x in X and for every clopen set V in Y with $x \in F^+(V)$ there is a p-set U in X such that $x \in U$ and $U \subseteq F^+(V)$. Now let $x \in X$ and let V be a clopen set in Y with $F(x) \subseteq V$. Since $F(x) \subseteq V$, F(V). By our assumption there exists a p- set U of X such that $F(U) \subseteq V$. If $F(V) \subseteq V$ and hence $F(U) \subseteq V$. Therefore $F(U) \subseteq V$ and hence $F(U) \subseteq V$.

Therefore by Definition 2.1, F is upper p-continuous at x and hence on X. *Theorem 2.10:*

Let X is a space in which the family of all p-sets is closed under arbitrary union. A multifunction F: $X \rightarrow Y$ is upper slightly p-continuous on X if and only if for every clopen set V in Y, F $^+$ (V) is a p-set in Y.

Proof: Suppose F is upper slightly p-continuous on X. Let V be a non empty clopen set in Y. Let $x \in F^+$ (V). Then by Theorem 2.9, there is p-set U in X with $x \in U \subseteq F^+(V)$. Therefore $F^+(V)$ are a union of p-sets. By hypothesis, $F^+(V)$ are a p-set. Conversely we assume that for every clopen set V in Y, $F^+(V)$ is a p-set in X. Let V be a clopen set with $x \in F^+(V)$. Since $F^+(V)$ is a p-set in X, taking $U = F^+(V)$ and using Theorem 2.9, F is upper slightly p-continuous. *Example 2.11:*

Let $X = Y = \{a, b, c, d\}$, and $\tau = \sigma = \{\emptyset, \{b, c, d\}, \{a, b\}, \{c, d\}, \{b\}, X\}$. Define $F: (X, \tau) \to (X, \sigma)$ by $F(a) = \{a, d\}$, $F(b) = \{a, c\}$, $F(c) = \{c, d\}$ and $F(d) = \{a, c\}$. F is upper slightly p-continuous.

Lower Slightly p-Continuity

In this section lower slightly p-continuous functions are introduced and characterized. *Definition 3.1:*

A multifunction $F: (X, \tau) \to (Y, \sigma)$ is said to be lower slightly p-continuous on X if for every clopen set V in Y with $V \cap F(x) \neq \emptyset$ there is a p-set U such that $x \in U$ and $F(u) \cap V \neq \emptyset$ for every $u \in U$. Theorem 3.2:

Let a multifunction $F: (X,\tau) \to (Y,\sigma)$ be weakly injective. If F is lower slightly p-continuous on X then for every x and for every clopen set B in Y with $B \cap F(x) = \emptyset$, there is a p-set U in X such that $x \in U$ and $B \cup F(X \setminus u) \neq Y$ for every $u \in U$.

Proof: Suppose F is lowering slightly p-continuous. Fix x in X and a clopen subset B of Y with $B \cap F(x) = \emptyset$. Then $F(x) \subseteq Y \setminus B$. Since $Y \setminus B$ is clopen in Y and since $(Y \setminus B) \cap F(x) = F(x) \neq \emptyset$, by using Definition 3.1, there is a p-set U in X with $x \in U$ and $F(u) \cap V \neq \emptyset$ for every $u \in U$. This implies $(Y \setminus F(u)) \cup (Y \setminus V) \neq Y$

Research Article

that implies $(Y \setminus F(u)) \cup B \neq Y$. Since F is weakly injective by Lemma 3.2.8, $F(X \setminus u) \subseteq Y \setminus F(u)$, that implies $F(X \setminus u) \cup B \neq Y$ for every $u \in U$.

Theorem 3.3:

A multifunction F: $(X, \tau) \to (Y, \sigma)$ is lower slightly p-continuous on X if and only if F: $(X, \tau^{\alpha}) \to (Y, \sigma)$ is lower slightly p-continuous;

Proof: Let $F: (X,\tau) \to (Y,\sigma)$ be lower slightly p-continuous. Suppose $x \in X$ and V is a clopen set in Y with $F(x) \cap V \neq \emptyset$. Then by using Definition 3.1, there is p-set U in (X,τ) such that $x \in U$ and $F(u) \cap V \neq \emptyset$ for all $u \in U$. Again by using Lemma 1.9, U is also a p-set in (X,τ^{α}) . This proves that $F: (X,\tau^{\alpha}) \to (Y,\sigma)$ is lower slightly p-continuous. Conversely we assume that $F: (X,\tau^{\alpha}) \to (Y,\sigma)$ is lower slightly p-continuous. Let $x \in X$ and V be a clopen set in Y with $F(x) \cap V \neq \emptyset$. Then by using Definition 3.1, there is p-set U in (X,τ^{α}) such that $F(u) \cap V \neq \emptyset$ for all $u \in U$. Again by using Lemma 1.9, U is also a p-set in (X,τ) . This proves that $F: (X,\tau) \to (Y,\sigma)$ is lower slightly p-continuous. *Theorem 3.4:*

If a multifunction F: $X \rightarrow Y$ is lowering slightly p-continuous and X_0 is clopen, then the restriction $F/_{X_0}$: $X_0 \rightarrow Y$ is lower slightly p-continuous.

Proof: Suppose a multifunction $F: X \to Y$ is lowering slightly p-continuous on X. Fix $x \in X_0$ and Y is a clopen set in Y with $F(x) \cap V \neq \emptyset$. Since F is lower slightly p-continuous on X, by Definition 3.1, there is a p-set U in X such that $x \in U$ and $F(u) \cap V \neq \emptyset$ for all $u \in U$. Let $U_0 = U \cap X_0$. Then using Lemma 1.9, U_0 is a p-set in X. Again by using Lemma 1.10, U_0 is a p-set in X_0 . Since $U_0 \subseteq U$, it follows that $F(u) \cap V \neq \emptyset$ for all $u \in U_0$. So by Definition 3.1, F/X_0 is lower slightly p-continuous on X and hence on X_0 . Theorem 3.7:

A multifunction F: $X \rightarrow Y$ is lower slightly p-continuous on X if and only if for every x in X and for every clopen set V in Y with $x \in F^-(V)$ there is a p-set U in X such that $x \in U$ and $U \subseteq F^-(V)$.

Proof: We assume that F is lowering slightly p-continuous on X. Let $x \in X$. Let V be a clopen set in Y such that $x \in F^-(V)$. This implies $F(x) \cap V \neq \emptyset$. Then by Definition 3.1, there is a p-set U in X such that $x \in U$ and F (u) $\cap V \neq \emptyset$ for all $u \in U$. Now $u \in U \Rightarrow F(u) \cap V \neq \emptyset \Rightarrow u \in F^-(V)$. This proves that $U \subseteq F^-(V)$. Conversely we assume that for every x in X and for every clopen set V in Y with $x \in F^-(V)$ there is a p-set U in X such that $x \in U$ and $U \subseteq F^-(V)$. Now let $x \in X$ and let V be a clopen set in Y with $F(x) \cap V \neq \emptyset$. Since $F(x) \cap V \neq \emptyset$, $x \in F^-(V)$. By our assumption there exists a p-set U of X such that $x \in U \subseteq F^-(V)$. If $u \in U$, then $u \in F^-(V)$ that implies F (u) $\cap V \neq \emptyset$ for all $u \in U$. Therefore by Definition 3.1, F is lowering p-continuous on X.

Examples can be constructed to show that the reverse implications are not true. *Example 3.8*:

Let $X = Y = \{a, b, c, d\}$ and $\tau = \sigma = \{\emptyset, \{b, c, d\}, \{a, b\}, \{c, d\}, \{b\}, X\}$. Define F: $(X, \tau) \to (X, \sigma)$ by $F(a) = \{a, d\}$, $F(b) = \{a, c\}$, $F(c) = \{c, d\}$ and $F(d) = \{a, b\}$. F is upper slightly p-continuous.

REFERENCES

Njastad O (1965). On some classes of nearly open sets. *Pacific Journal of Mathematics* 15 961-970. Thangavelu P and Rao KC (2002). P-Sets in topological spaces. *Bulletin of Pure and Applied Sciences* 21(E) (2) 341-355.