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ABSTRACT 

The kronig-penney potential is used to define the crystal potential from which the wave function for the 
surface state is derived. The wave function thus obtained is used for photoemission calculations in the 

case of transition metals like W and Ni and semiconductors like lead salt using a spatially dependent 

vector potential. PACS: 79.60-i, 61.80Ba, 78.68+m, 41.20Jb 
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INTRODUCTION 
Photoemission technique has widely been considered as a means for studying the surface electronic state 

of solids. Photoemission is basically concerned with the excitation of electrons. These photo-excited 

electrons lying either at the surface or deep within the bulk have to gain sufficient energy such that they 
are transported across the surface potential barrier. The incident photon energy is too weak to impart the 

necessary momentum to photoexcite the surface electrons. The spatial variation of the vector potential at 

the surface has been considered to be the main factor responsible for initiating the photo excitation at the 

surface. Bagchi and Kar (1978) developed a dielectric model to deduce vector potential using a simple 
‘local’ dielectric function and applied the same to study photoemission from tungsten. This model had 

been used by Thapa et al. in explaining the surface photoemission in metals like aluminium (Das et al., 

(1991); Zaithanzauva and Thapa (1996), palladium (Thapa, 1991)), copper and molybdenum (Pachuau et 
al., (2002)) and semiconductors like silicon and gallium arsenide (Thapa et al., 1994; Pachuau et al., 

1999). 

In this report, we will use a dielectric model for the surface which unlike the model of Bagchi and Kar 
(1978) interpolates logarithmically between the bulk value and the vacuum value (Gurung et al., 2006). 

On the basis of this, an appropriate vector potential will be deduced which will be used for calculating 

photocurrent. Photocurrent will be calculated from metals W and Ni and semiconductors PbS and PbSe. 

Formalism 
Using Fermi golden rule (Penn (1972)), photocurrent density formula can be written as 
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Where i  and f  are the initial and final state wave functions and )(
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being the vector potential of the photon field and p  the one electron momentum operator. To evaluate 

the matrix element, we have to evaluate A and construct i  and f .  

Dielectric Model and Vector Potential 

We consider the solid to occupy all space to the left of 0z  plane with surface parallel to the x-y plane 

and assume the surface region to extend from 0z  to dz   such that the surface is of thickness d . 

The model dielectric function (Figure 1) for the bulk ( dz  ), surface ( 0 zd ) and vacuum 

( 0z ) is given by, 
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Where )()()( 21  ib   is the dielectric 

function for the bulk region? For a p polarized light, 

the magnetic field ),,()( zBzB K  

(where iSin
c




K ) is in the y-direction and it obeys 

the following equation (Landau and Lifsitz, 1984)  
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To solve the above equation, we follow the prescription of Landau and Lifsitz and use )()( zzu B , 

so that 
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In vacuum, 1 , and 0
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In the surface region, 
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Where, )1(
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Absorbing the numerical coefficients and neglecting higher terms, we write the solution in the surface 
region as, 
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Using the boundary conditions that B  and 
z

B




 is continuous at 0z  and dz  , we obtain for the 

three regions as 
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 The electric field components can be obtained from the magnetic field by using the relation 
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Thus, we can write the vector potential in three regions as 
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Various parameters in Equation (10) are defined as,  
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Where,  ,,,  etc. in Equation (11) are given by,  
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Matrix Element 

Matrix element in Equation (1) for transition from initial to final state can be written in expanded form for 
the three regions as  
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Where in each region, the wave functions and the vector potentials corresponding to that region have to 

be used. The final state wave function ( f ) is taken to be free electron type (Thapa and Kar, 1988) given 

by the following expression, 
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 is introduced for the region 0z  to take into account the inelastic scattering of 

the electron (Pendry, 1976). To deduce the initial state wave function ( i ), Kronig Penney potential 

(Thapa and Kar, 1995) is used to define the crystal potential. In this, one generally solves the one 
dimensional Schrodinger’s equation which can be written as 
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Where 
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ki   and )(zV  is the  -function potential of the Kronig-Penney model. Let )(z  denote 

the Bloch wave function deep in the metal and )(z  the time reversal version of )(z . The 

eigenfunction in the semi-infinite solid ( 0z ) has been chosen to have the form 

  )()()( zPzzi
    …………………………………………………………... (16) 

Where P  is the reflection coefficient obtained by matching the wave functions and its derivative 

at 0z ? One can then show that the initial state wave function for 0z  may be written as 
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Where T  is the transmission coefficient across the boundary plane and )(22 EVo   with oV  being 

the step potential at the surface? By matching the wave function and its derivative at 0z , we get  
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Thus, the initial state wave function can be written as 
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Using these expressions of f  and i  from Equations (14) and (19) and the vector potential as given by 

Equation (10), the matrix element in Equation (13) can be evaluated for each region to calculate 

photocurrent. 

 

RESULTS AND DISCUSSION 
The variation of vector potential as a function of photon energy for three locations of the surface plane 

has been calculated in the case of metals W and Ni and semiconductors PbS and PbSe. We have used the 

experimentally determined values of dielectric constants for calculating the vector potential in Equation 
(10). This value of vector potential had been used as a subroutine in the main FORTRAN programme to 

calculate photocurrent. We have used the following data for all the systems for calculating photocurrent. 

Here energy is measured from the bottom of the well. 

Angle of incidence 
o

i 45  

Potential barrier height 28.19oV  eV 

Initial state energy 5.11iE eV.  

(a) Tungsten: Figure 2 shows the plot of 2
)(

~
zA

 against photon energy    for locations of the surface 

plane at 
2

,
d

dz   and 0  respectively. We find that for 
2

d
z   (middle of surface width), as the photon 

energy is increased, the values of 
2

)(
~

zA increases and attains a maxima at 21  eV. As the value 
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of   is further increased, 
2

)(
~

zA decreases and becomes minimum at 28 eV. The plasmon 

energy of W is 3.25p eV. It means that near about the plasmon energy of W 
2

)(
~

zA attains a 

minimum value. Beyond this value when   increases a second hump in 
2

)(
~

zA is obtained at 

35 eV and it decreases as   increases. For dz   and 0z , the plot does not show peaks 

neither before the plasmon energy nor after it rather we find a small hump at around 21 eV in both cases. 

The plot of photocurrent as a function of   in the case of W with scattering factor 90.  and 

strength of the potential 70.g  is shown in Figure 3. We have shown the plots for two surface widths 

652.d Å (the curve with open circle) and narrow surface width 0d (the curve with closed circles). 

For 652.d Å, we find that the photocurrent increases as   increases and attains a maximum at 

19 eV. Further increase in photon energy (  ) decreases the photocurrent and shows a minimum 

at 25 eV. The plasmon energy of W is at 325. p  eV. It means that the minimum in 

photocurrent occurs at plasmon energy. 

 
 

Figure 2: Plot of 
2

)(
~

zA as a function of   for W 
Figure 3: Plot of Photocurrent as a function of 

photon energy   for W 
 
This feature had been also seen in the experimental results (Weng et al., 1978) and also in the calculated 

results of Bagchi and Kar (1978). We also did a calculation with a narrow surface width 0d  (the curve 

with closed circle). We see that in this case, the minimum at the plasmon energy in the photocurrent plot 

is missing. This supports our conclusion that the inclusion of surface of certain width and spatial variation 

of vector potential is important in the analysis of photoemission data. 

(b) Nickel: Figure 4 shows the variation of 2
)(

~
zA

as a function of photon energy for different values of the 

surface plane ( 0,
2

,  z
d

zdz ). From the plot it is clear that the field for the middle of the surface 

2

d
z   (the curve with open circle) shows a peak at around 11eV followed by a broad minimum from 18 

to 24eV. Beyond 24eV, however the plot shows an increase in 
2

)(
~

zA  as   increases. Although the 

plot shows a broad minimum, the minimum is near the plasmon energy of Ni that is eVp 21 . 
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Figure 4: Plot of 2

)(
~

zA
as a function of   for 

Ni 

Figure 5: Plot of Photocurrent as a function of 

photon energy  for Ni 

In Figure 5, we have shown the results of the variation of photocurrent as a function of photon energy for 

surface width 35.d Å and 0d  (narrow surface) with scattering factor 90.  and strength of the 

potential 70.g . Just like in the case of metal W, the photocurrent plot for 35.d Å (the curve with 

open circles) increases with the increase in photon energy and showed a maximum at 18 eV. A 

minimum in the photocurrent occurred at 23 eV with a second peak in photocurrent of a small height at 

25 eV. The behavior in photocurrent showed trends similar to that in the case of W. For narrow 

surface width ( 0d ), the photocurrent did not show any such features but instead remained constant for 

all values of photon energies.  

(c) Lead Sulphide: Figure 6 shows the variation of 2
)(

~
zA

with photon energy for different values of 

surface plane (
0,

2
,  z

d
zdz

) in the case of PbS. For locations of the surface plane at
2

d
z   , we find 

that the values of 2

ω(z)A
~  showed a maxima at 12  eV, followed by a minimum at 16  eV. A 

second hump in 2
(z)ωA

~  was found at 18  eV. As can be seen from the figure, the variation of 2
(z)ωA

~  

as a function of photon energy for other locations of the surface planes i.e. z d   and 0z , is totally 

different from that in the case of 
2

d
z  

 with no pronounced maximum and minimum.  

  

Figure 6: Plot of 

2
)(

~
zA

as a function of   for PbS 

 

Figure 7: Plot of Photocurrent as a function of 

photon energy  for PbS. 
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 Figure 7 shows the plot of photocurrent against photon energy for PbS with scattering factor 5.0 , 

strength of the potential 5.0g  and surface thickness 652.d Å. The photocurrent plot for 

652.d Å (the curve with open circles) shows a peak around 13eV with a minimum at around 14.5eV 

followed by a second broad peak around 16eV. The photocurrent plot for a narrow surface width 0d  

(the curve with closed circles) shows a peak of lower height at around 13eV followed by a dip in 

photocurrent at 14.5eV, beyond which the photocurrent remains constant with further increase in photon 
energy. This shows that the surface effect is less prominent in case of semiconductor in contrast to the 

case of metals in which the surface effect is prominent. 

(d) Lead Selenide: Figure 8 shows the plot of 
2

)(
~

zA against photon energy for different values of 

surface plane ( 0,
2

,  z
d

zdz ). As can be seen from the figure, there is no pronounced peak or 

minimum even in the case of the plot for the middle of the surface plane i.e. 
2

d
z   (the curve with open 

circles). It is seen that 
2

)(
~

zA  initially increases with increase in photon energy (  ), however instead 

of a peak and expected minimum at plasmon energy, it shows a plateau in the photon energy range 9 to 

14eV. Beyond 14eV, there is a slight rise in 
2

)(
~

zA  with further increase in photon energy. For dz  , 

2
)(

~
zA  practically remains constant for all values of photon energies while for 0z , 2

)(
~

zA
 shows a 

broad plateau extending from around 6eV to 14eV. However beyond 14eV, 2
)(

~
zA

 shows a decrease 

with further increase in photon energy. 
 

  

Figure 8: Plot of 

2
)(

~
zA as a function of   for 

PbSe 

 

Figure 9: Plot of Photocurrent as a function of 

photon energy   for PbSe 
 

Figure 9 shows the variation of photocurrent in the case of PbSe as a function of photon energy with 

scattering factor 9.0 , the strength of the potential 7.0g  and surface thickness 35.d Å (the 

curve with open circles). The curve for 35.d Å shows a minimum around 5.5eV. There is a maximum 

around 4.5eV and a broad maximum of much lower height at around 8eV. The plot of photocurrent for a 

narrow surface width 0d  (the curve with closed circles) also shows similar trends apart from the 
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difference in the height of the peaks. This again supports our view that the surface characteristics are less 

pronounced in the semiconductors than in the case of metals. 

 

CONCLUSION 

The calculated result of photocurrent for the metals and semiconductors shows that our model gives 

results that agree qualitatively with the experimental results. We feel that a proper choice of crystal 
potential will enable us to obtain the initial state wave-function that is well-defined for the surface, bulk 

and the vacuum region unlike the K-P potential used here which gives the same initial state wave-

functions for both the surface and bulk region. The initial state wave-function thus obtained will definitely 

give results that are much closer to the experimental results. From the results presented here, we can 
safely conclude that the dielectric model presented here does work well for metals especially in the case 

of Al (Gurung et al., 2006) and W. 
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