Research Article

SOME GENERALIZATIONS OF ENESTRÖM – KAKEYA THEOREM

*M.A. Kawoosa and W.M. Shah

Department of Mathematics, University of Kashmir, Srinagar-190006, India *Author for Correspondence

ABSTRACT

In this paper we establish some more generalizations of Eneström – Kakeya theorem a classical result in the theory of distribution of zeros of polynomials. Besides many consequences our results considerably improve the bounds in some cases as well. Mathematics subject classification (2000):30C10, 30C15.

Key Words: Polynomial, Zeros, Eneström – Kakeya Theorem, Generalizations

INTRODUCTION

The fallowing classical result known as Eneström – Kakeya theorem Marden (1966); Rahman and Scmeisser (2002) is famous in the theory of distribution of zeros of polynomials. Theorem A:

If P (z) = $\sum_{r=0}^{n} a_r z^r$ is a polynomial of degree n, such that

$$a_n \ge a_{n-1} \ge \dots \ge a_1 \ge a_0 > 0$$

Then P (z) has all its zeros in the disk $|z| \le 1$.

In the literature attempts have been made to extend and generalize the Eneström - Kakeya theorem. Joyal, Labelle and Rahman (1967) extended it to the polynomials with general monotonic coefficients by showing that, if the coefficients of the polynomial satisfy the condition

$$a_n \ge a_{n-1} \ge \dots \ge a_1 \ge a_0$$

Then all the zeros of P (z) are contained in the disk

$$|\mathbf{z}| \leq \frac{a_n - a_0 + |a_0|}{|a_n|}$$

Aziz and zargar (1996) relaxed the hypothesis of Theorem A and proved:

Theorem B: If P(z) = $\sum_{r=0}^{n} a_r z^r$ is a polynomial of degee n such that for some $\lambda \ge 1$,

$$\lambda a_n \ge a_{n-1} \ge a_{n-2} \ge \cdots \ge a_2 \ge a_1 \ge a_0.$$

Then P (z) has all its zeros in the disk.

$$|z+\lambda-1| \le \frac{\lambda a_n - a_0 + |a_0|}{|a_n|}.$$

On the other hand Govil and Rahman (1968) extended this theorem to the polynomials with complex coefficients, assuming that the moduli of coefficients are monotonic, and proved the following:

Theorem C: If P (z) =
$$\sum_{r=0}^{n} a_r z^r is$$
 a polynomial of degee n such that for some t > 0 $|a_n| \ge t |a_{n-1}| \ge t^2 |a_{n-2}| \ge \cdots \ge t^{n-2} |a_2| \ge t^{n-1} |a_1| \ge t^n |a_0|$.

Then all the zeros of P (z) lie in the disk $|z| \le \frac{k_1}{t}$, where k_1 is the greatest positive root of the equation $K^{N+1} - 2K^n + 1 = 0$.

In the same paper they also proved that, if P (z) = $\sum_{r=0}^{n} a_r z^r i s$ a polynomial of degee n such that for someβ.

IArg
$$a_r$$
- $\beta I \le \alpha \le \frac{\pi}{2}$; r=0, 1, 2... n

and

and
$$|a_n| \ge |a_{n-1}| \ge ... \ge |a_1| \ge |a_0|,$$
 Then all the zeros of P (z) lie in the disk

The disk
$$|z| \le \cos\alpha + \sin\alpha + \frac{2\sin\alpha}{|a_n|} \sum_{i=0}^n |a_i|,$$

Recently as further generalizations of the Eneström – Kakeya theorem Choo (2011) proved:

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) An Online International Journal Available at http://www.cibtech.org/jpms.htm

2012 Vol. 2 (3) July-September pp. 22-28/Kawoosa and Shah

Research Article

Theorem D: let P (z) = $\sum_{r=0}^{n} a_r z^r$ be a polynomial of degree n such that for some $\lambda \neq 1$, $1 \leq k \leq n$ and $a_{n-k} \neq 1$

$$a_n \ge a_{n-1} \ge \dots \ge a_{n-k+1} \ge \lambda a_{n-k} \ge a_{n-k-1} \ge \dots \ge a_0$$
.

If $a_{n-k-1} > a_{n-k}$, then all the zeros of P (z) lie in the disk $IzI \le k_1$, where k_1 is the greatest positive root of the equation

$$K^{k+1} - \delta_1 K^k - |\gamma_1| = 0$$
,

Where

$$\gamma_{l} = \frac{(\lambda-1)a_{n-k}}{a_{n}} \qquad \text{and} \qquad \delta_{l} = \frac{a_{n}+(\lambda-1)a_{n-k}-a_{0}+|a_{0}|}{|a_{n}|}.$$
 If $a_{n-k} > a_{n-k+1}$, then all the zeros of P (z) lie in the disk IzI $\leq k_{2}$, where k_{2} is the greatest positive root of the

equation

$$K^{k}$$
 - $\delta_{2}K^{k-1}$ - $|\gamma_{2}| = 0$,

Where

$$\gamma_2 = \frac{(1-\lambda)a_{n-k}}{a_n}$$
 and $\delta_2 = \frac{a_n + (1-\lambda)a_{n-k} - a_0 + |a_0|}{|a_n|}$

Motivated by his method of proof, we in this paper prove the fallowing results which include Theorem D and some other generalizations of Eneström - Kakeya theorem as special cases.

Theorem 1: Let P(z) = $\sum_{r=0}^{n} a_r z^r$ be a polynomial of degree n such that for some real μ and k, $1 \le k \le n$.

$$a_n \ge a_{n-1} \ge \ldots \ge a_{n-k+1} \ge \mu + a_{n-k} \ge a_{n-k-1} \ge \ldots \ge a_0 > 0.$$

 $a_n \ge a_{n-1} \ge \ldots \ge a_{n-k+1} \ge \mu + a_{n-k} \ge a_{n-k-1} \ge \ldots \ge a_0 > 0.$ If $a_{n-k-1} > a_{n-k}$, then all the zeros of P (z) lie in the disk $IzI \le k_1$, where k_1 is the greatest positive root of the equation

$$R^{k+1} - (1 + \frac{\mu}{a_n})R^k - \frac{|\mu|}{a_n} = 0.$$

If $a_{n-k} > a_{n-k+1}$, then all the zeros of P (z) lie in the disk IzI $\leq k_2$, where k_2 is the greatest positive root of the equation

$$R^{k} - (1 + \frac{\mu}{a_n}) R^{k-1} - \frac{|\mu|}{a_n} = 0.$$

Remark 1: If we take $\mu = (\lambda - 1)$ an_k, such that $\lambda \neq 1$, in Theorem 1, we get Theorem D. Also for $\mu = 0$ this theorem reduces to Eneström - Kakeya theorem. Further If we take k=0 in Theorem 1 and there by assumes

$$\mu + a_n \ge a_{n-1} \ge ... \ge a_1 \ge a_0 > 0$$
,

Then we get the following:

Corollary 1: If P (z) is a polynomial of degree n such that for some $\mu \ge 0$

$$\mu + a_n \ge a_{n-1} \ge \dots \ge a_1 \ge a_0 > 0$$
,

Then all the zeros of P (z) lie in

$$|z| \le \frac{2\mu}{a_n} + 1$$

Remark 2: If we take μ = 0 in Corollary 1, we get Eneström - Kakeya theorem. Whereas if we replace μ by $a_n(\lambda-1)$ in Corollary 1 we get the following:

Corollary 2.If P (z) = $\sum_{r=0}^{n} a_r z^r$ is a polynomial of degee n such that for some $\lambda \ge 1$,

$$\lambda a_n \ge a_{n-1} \ge a_{n-2} \dots \ge a_2 \ge a_1 \ge a_0 > 0$$
,

Then all the zeros of P (z) lie in

$$|z| \le 2\lambda - 1$$

We next prove

Theorem 2: Let $P(z) = \sum_{r=0}^{n} a_r z^r$ be a polynomial of degree n with $Re(a_r) = \alpha_r$ and $Im(a_r) = \beta_r$ r =0,1,2,...,n and assume that for some μ and k, $1 \le k \le n$,

$$\begin{split} \alpha_n &\geq \alpha_{n\text{-}1} \geq \ldots \geq \alpha_{n\text{-}k+1} \geq \mu + \alpha_{n\text{-}k} \geq \ldots \geq \alpha_1 \geq \alpha_0\,, \\ \beta_n &\geq \beta_{n\text{-}1} \geq \ldots \geq \beta_1 \geq \beta_0\,. \end{split}$$

If $\alpha_{n-k-1} > \alpha_{n-k}$, then all the zeros of P (z) lie in the disk IzI $\leq k_1$, where k_1 is the greatest positive root of the equation

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) An Online International Journal Available at http://www.cibtech.org/jpms.htm 2012 Vol. 2 (3) July-September pp. 22-28/Kawoosa and Shah

Research Article

$$R^{k+1} - (\frac{\alpha_n + \beta_n + \mu}{|a_n|}) R^k - \frac{|\mu|}{|a_n|} = 0$$

If $\alpha_{n-k} > \alpha_{n-k+1}$, then all the zeros of P (z) lie in the disk $IzI \le k_2$, where k_2 is the greatest positive root of the equation

$$R^{k} - \frac{a_{n} + \beta_{n} + \mu}{|a_{n}|} R^{k-1} - \frac{|\mu|}{|a_{n}|} = 0$$

We also prove:

Theorem 3: Let P(z) = $\sum_{r=0}^{n} a_r z^r$ be a polynomial of degree n such that for some real β

IArg
$$a_r$$
- $\beta I \le \alpha \le \frac{\pi}{2}$; $r = 0, 1... n$

And for some real $\mu > 0$.

$$|a_n| \ge |a_{n-1}| \ge \ldots \ge |a_{n-k+1}| \ge \mu + |a_{n-k}| \ge |a_{n-k-1}| \ge \ldots \ge |a_0|.$$

If $|a_{n-k}| < |a_{n-k-1}|$, then all the zeros of P (z) lie in the disk $|z| \le k1$. Here k_1 is the greatest positive root of the equation

$$R^{k+1} - \delta R^k - \frac{|\mu|}{|a_n|} = 0,$$

Where

$$\delta = \frac{(|a_n| + |\mu + a_{n-k}|)(\cos\alpha + \sin\alpha) - (|a_{n-k}| + a_0|)\cos\alpha - (|a_{n-k}| - |a_0|)\sin\alpha + 2\sin\alpha\sum_{i=0}^{n-1}|a_i| + |a_0|}{|a_n|}.$$

If $|a_{n-k}| > |a_{n-k+1}|$ then all the zeros of P(z) lie in the disk $|z| \le k_2$, where k_2 is the greatest positive root of the equation

$$R^{k} - \delta_{1} R^{k-1} - \frac{\mu}{a_{n}} = 0,$$

And

$$\delta_{l} = \frac{(|a_{n}| - |a_{n-k} - \mu| + |a_{n-k}| - a_{0})\cos\alpha - \{(|a_{n-k}| + a_{0}| - (|a_{n-k} - \mu| + |a_{n}| + 2\sum_{i=0}^{n-1} |a_{i}|)\sin\alpha + |a_{0}|}{|a_{n}|}.$$

We need the following lemma which is due to Govil and Rahman (1968).

Lemma 1: Consider two complex numbers b_0 and b_1 , such that $IbOI \ge Ib_1I$, if $IArg b_r - \beta I \le \alpha \le \frac{\pi}{2}$; r=0, 1 then

$$|b_0-b_1| \le (|b_0| - |b_1|)\cos\alpha + (|b_0| + |b_1|)\sin\alpha$$
.

Proofs of Theorems

Proof of Theorem 1: For μ=0, the result reduces to Eneström- Kakeya theorem, therefore we suppose that $\mu \neq 0$. Consider a polynomial

$$f(z) = (1-z) P(z)$$

$$=-a_nz^{n+1}+(a_{n}-a_{n-1})z^n+\ldots+(a_{n-k+1}-a_{n-k})\ z^{n-k+1}+(a_{n-k}-a_{n-k-1})z^{n-k}+\ldots+(a_{1}-a_{0})z+a_0\ .$$
 If $a_{n-k-1}>a_{n-k}$, then $a_{n-k+1}>a_{n-k}$ and $f(z)$ can be written as

$$f(z) = -a_n z^{n-1} - \mu z^{n-k} + (a_n - a_{n-1}) z^n + \ldots + (a_{n-k+1} - a_{n-k}) z^{n-k+1} + (\mu + a_{n-k} - a_{n-k-1}) z^{n-k} + (a_{n-k-1} - a_{n-k-2}) z^{n-k-1} + \ldots + (a_1 - a_0) z + a_0.$$

Therefore for IzI >1, we have

$$\begin{split} &|f(z)| \geq |a_n z^{n+1} + \mu z^{n-k}| - IzI^n|(a_n - a_{n-1}) + \ldots + (\frac{a_{n-k+1} - a_{n-k}}{z^{k-1}}) + (\frac{\mu + a_{n-k} - a_{n-k-1}}{z^k}) + \ldots + (\frac{a_1 - a_0}{z^{n-1}}) + \frac{a_0}{z^n}|\\ &\geq IzI^{n-k} I \ a_n z^{k+1} + \mu I - IzI^n \{|a_n - a_{n-1}| + \ldots + |\frac{a_{n-k+1} - a_{n-k}}{z^{k-1}}| + |\frac{\mu + a_{n-k} - a_{n-k-1}}{z^k}| + \ldots + |\frac{a_1 - a_0}{z^{n-1}}| + |\frac{a_0}{z^n}| \}\\ &> IzI^{n-k} \ |a_n z^{k+1} + \mu| - IzI^n \{|a_n - a_{n-1}| + a_{n-1} - a_{n-2} + \ldots + a_{n-k+1} - a_{n-k} + \mu + a_{n-k} - a_{n-k-1} + \ldots + a_{1} - a_0 + a_0 \}\\ &= IzI^{n-k} \ |a_n z^{k+1} + \mu| - IzI^n \{|a_n - a_{n-1}| + a_{n-1} - a_{n-2} + \ldots + a_{n-k+1} - a_{n-k} + \mu + a_{n-k} - a_{n-k-1} + \ldots + a_{1} - a_0 + a_0 \}\\ &> 0, \end{split}$$

If $|z^{k+1} + \frac{\mu}{a_n}| > (1 + \frac{\mu}{a_n})$ IzI^k. This inequality holds if

$$|z|^{k+1} - \frac{|\mu|}{a_n} > (1 + \frac{\mu}{a_n}) |z|^k$$
.

Therefore in this case all the zeros of f (z) with modulus greater than one lie in the disk $IzI \le k_1$, where k_1 is the greatest positive root of the equation

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) An Online International Journal Available at http://www.cibtech.org/jpms.htm 2012 Vol. 2 (3) July-September pp. 22-28/Kawoosa and Shah

Research Article

$$f_1(R) = R^{k+1} - (1 + \frac{\mu}{a_n})R^k - \frac{|\mu|}{a_n} = 0$$

Since $a_{n-k-1} > a_{n-k}$, therefore $\mu > 0$ and in this case $f_1(1) = -\frac{2\mu}{a_n} < 0$. Hence $k_1 > 1$. This shows that those zeros of f (z) whose modulus is less than or equal to one are already contained in the disk $|z| \le k_1$. Hence all the zeros of f (z) lie in $|z| \le k_1$, where k_1 is the greatest positive root of the equation

$$f_1(R) = R^{k+1} - (1 + \frac{\mu}{a_n})R^k - \frac{|\mu|}{a_n} = 0$$

$$f_1(R) = R^{k+1} - (1 + \frac{\mu}{a_n}) R^k - \frac{|\mu|}{a_n} = 0$$
 Again, if $a_{n-k} > a_{n-k+1}$, then $a_{n-k} > a_{n-k-1}$ and $f(z)$ can be written as
$$f(z) = -a_n z^{n+1} - \mu z^{n-k+1} + (a_n - a_{n-1}) z^n + \ldots + (a_{n-k+1} - a_{n-k} + \mu) z^{n-k+1} + (a_{n-k} - a_{n-k-1}) z^{n-k} + \ldots + (a_1 - a_0) z + a_0.$$
 Now, for $|z| > 1$

$$\begin{split} &|f(z)| \geq |z|^{n-k+1} \; |a_n z^k + \mu \; | - \; IzI^n | (a_n - a_{n-1}) + \; \ldots + \left(\frac{a_{n-k+1} - a_{n-k} + \mu}{z^{k-1}}\;\right) + \left(\frac{a_{n-k} - a_{n-k-1}}{z^k}\right) + \; \ldots + \left(\frac{a_1 - a_0}{z^{n-1}}\right) + \frac{a_0}{z^n} \; |.\\ &\geq |z|^{n-k+1} \; |a_n z^k + \mu \; | - \; IzI^n \{ \; | \; a_n - a_{n-1} \; | + \; \ldots + \frac{|a_{n-k+1} - a_{n-k} + \mu|}{|z|^{k-1}} \; + \frac{|a_{n-k} - a_{n-k-1}|}{|z|^k} + \ldots + \frac{|a_1 - a_0|}{|z|^{n-1}} \; + \frac{|a_0|}{|z|^n} \; \}.\\ &> |z|^{n-k+1} \; |a_n z^k + \mu \; | - \; IzI^n \{ \; a_n - a_{n-1} + \; \ldots + a_{n-k+1} - a_{n-k} \; + \; \mu \; + a_{n-k} - a_{n-k-1} + \; \ldots + -a_1 - a_0 \; + \; a_0 \}.\\ &= \; IzI^{n-k+1} \; |a_n z^k + \mu | - \; IzI^n \{ \; a_n + \mu \} \\ & \geqslant 0. \end{split}$$

If

$$|z^{k} + \frac{\mu}{a_{n}}| > (1 + \frac{\mu}{a_{n}}) |z|^{k-1}$$

This inequality holds if

$$IzI^{k} - \frac{|\mu|}{a_{n}} > (1 + \frac{\mu}{a_{n}}) IzI^{k-1}$$

Hence all the zeros of f(z) with modulus greater than one lie in the disk $IzI \le k_2$, where k_2 is the greatest positive root of the equation

$$R^{k} - (1 + \frac{\mu}{a_n}) R^{k-1} - \frac{|\mu|}{a_n} = 0.$$

Now, as in the first case, it can be easily shown that $k_2 \ge 1$. Therefore, the zeros of f(z) with modulus less than or equal to one are already contained in the disk $IzI \le k_2$. Finally we note that every zero of P(z) is also a zero of f(z) and the proof of Theorem 1 is complete.

Proof of Theorem 2: Consider the polynomial

$$f(z) = (1-z)P(z)$$

$$= -a_{n}z^{n+1} + (a_{n}-a_{n-1})z^{n} + \ldots + (a_{n-k+1}-a_{n-k})z^{n-k+1} + (a_{n-k}-\alpha_{n-k-1})z^{n-k} + \ldots + (a_{1}-a_{0})z + a_{0}$$

$$= -a_{n}z^{n+1} + (\alpha_{n}-\alpha_{n-1})z^{n} + \ldots + (\alpha_{n-k+1}-\alpha_{n-k})z^{n-k+1} + (\alpha_{n-k}-\alpha_{n-k-1})z^{n-k} + (\alpha_{n-k-1}-\alpha_{n-k-2})z^{n-k-1} + \ldots + (\alpha_{1}-\alpha_{0})z + \alpha_{0}$$

$$+ i\{(\beta_{n}-\beta_{n-1})z^{n} + \ldots + (\beta_{1}-\beta_{0})z + \beta_{0}\}.$$

Now if $\alpha_{n-k-1} > \alpha_{n-k}$ then $\alpha_{n-k+1} > \alpha_{n-k}$ and f(z) can be written as

$$\begin{split} f(z) &= -a_n z^{n+1} - \mu \ z^{n-k} + (\alpha_n - \alpha_{n-1}) z^n + \ldots + (\alpha_{n-k+1} - \alpha_{n-k}) \ z^{n-k+1} + (\mu + \alpha_{n-k} - \alpha_{n-k-1}) z^{n-k} + (\alpha_{n-k-1} - \alpha_{n-k-2}) \ z^{n-k-1} + \ldots \\ &+ (\alpha_1 - \alpha_0) z + \alpha_0 + i \{ (\beta_n - \beta_{n-1}) z^n + \ldots + (\beta_1 - \beta_0) z + \beta_0 \}. \end{split}$$

Therefore for IzI > 1, we have

$$\begin{split} |f(z)| &\geq |a_n z^{n+1} + \mu z^{n-k}| - IzI^n|(\alpha_n - \alpha_{n-1}) + \ldots + (\frac{\alpha_{n-k+1} - \alpha_{n-k}}{z^{k-1}}) + (\frac{\mu + \alpha_{n-k} - \alpha_{n-k-1}}{z^k}) + \ldots + (\frac{\alpha_1 - \alpha_0}{z^{n-1}}) \\ &\quad + \frac{\alpha_0}{z^n} + i\{(\beta_n - \beta_{n-1}) + \ldots + \frac{(\beta_1 - \beta_0)}{z^{n-1}} + \frac{\beta_0}{z^n}\}| \\ &\geq IzI^{n-k} \; |a_n z^{k+1} + \mu| - |z|^n \{ \mid \alpha_n - \alpha_{n-1} \mid + \mid \frac{\alpha_{n-1} - \alpha_{n-2}}{z} \mid + \ldots + \mid \frac{\alpha_{n-k+1} - \alpha_{n-k}}{z^{k-1}} \mid + \mid \frac{\mu + \alpha_{n-k} - \alpha_{n-k-1}}{z^k} \mid + \\ &\quad \ldots + |\frac{\alpha_1 - \alpha_0}{z^{n-1}} \mid + \frac{\alpha_0}{z^n} + |\beta_n - \beta_{n-1}| + \ldots + |\frac{\beta_1 - \beta_0}{z^{n-1}} \mid + \mid \frac{\beta_0}{z^n} \mid \} \\ & > |z|^{n-k} \; |a_n z^{k+1} + \mu| - |z|^n \{\alpha_n - \alpha_{n-1} + \alpha_{n-1} - \alpha_{n-2} + \ldots + \alpha_{n-k+1} - \alpha_{n-k} + \mu + \alpha_{n-k} - \alpha_{n-k-1} + \ldots + \alpha_1 - \alpha_0 + \alpha_0 + \beta_n - \beta_{n-1} + \ldots + \beta_1 - \beta_0 + \beta_0\} = IzI^{n-k} \; |a_n z^{k+1} + \mu| - IzI^n \{\alpha_n + \beta_n + \mu\} \\ & \geqslant 0, \end{split}$$

If

$$|\mathbf{z}^{k+1} + \frac{\mu}{a_n}| > \left(\frac{\alpha_n + \beta_n + \mu}{|a_n|}\right) |\mathbf{z}|^k.$$

But this inequality holds if

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) An Online International Journal Available at http://www.cibtech.org/jpms.htm 2012 Vol. 2 (3) July-September pp.22-28/Kawoosa and Shah

Research Article

$$\operatorname{IzI}^{k+1} - \frac{\mu}{|a_n|} > \left(\frac{\mu + \alpha_n + \beta_n}{|a_n|}\right) \operatorname{IzI}^k.$$

This shows that all the zeros of f(z) with modulus greater than one lie in the disk $IzI \le k_1$, where k_1 is the greatest positive root of the equation

$$R^{k+1} - (\frac{\mu + \alpha_n + \beta_n}{|a_n|}) R^k - \frac{\mu}{|a_n|} = 0.$$

As in the case of Theorem 1, It can be shown that $k_1>1$. Hence all the zeros of f(z) with modulus less than or equal to one already lie in the disk $IzI \le 1$ and the proof of the first part is complete.

Now suppose that $\alpha_{n-k} > \alpha_{n-k+1}$, then $\alpha_{n-k} > \alpha_{n-k-1}$, and f(z) can be written as

$$\begin{split} f(z) = & - \widehat{a_n} \, z^{n+1} - \mu z^{n-k+1} + (\alpha_n - \alpha_{n-1}) z^n + \ldots + (\alpha_{n-k+1} - \alpha_{n-k} + \mu) z^{n-k+1} + (\alpha_{n-k} - \alpha_{n-k-1}) z^{n-k} + \ldots + (\alpha_1 - \alpha_0) z + \alpha_0 + \\ & i \{ (\beta_n - \beta_{n-1}) z^n + \ldots + (\beta_1 - \beta_0) z + \beta_0 \} \end{split}$$

If IzI>1, then

$$\begin{split} If(z)I &\geq I \ a_n z^{n+1} + \mu \ z^{n-k+1} \ I \text{-} IzI^n \{ \big| \ \propto_{n-} \propto_{n-1} \big| + \ldots + \big| \frac{\alpha_{n-k+1} - \alpha_{n-k} + \mu}{z^{k-1}} \big| + \big| \frac{\alpha_{n-k} - \alpha_{n-k-1}}{z^k} \big| + \ldots + \big| \\ & \big| \ \frac{\alpha_1 - \alpha_0}{z^{n-1}} \big| + \big| \ \frac{\alpha_0}{z^n} \big| + \big| \beta_{n-} \beta_{n-1} \ \big| + \ldots + \big| \ \frac{\beta_{n-k} - \beta_{n-k-1}}{z^k} \big| + \ldots + \big| \ \frac{\beta_1 - \beta_0}{z^{n-1}} \ \big| \ + \big| \ \frac{\beta_0}{z^n} \ \big| \, \} \\ &= IzI^{n-k+1} \ Ia_n z^k + \mu \ I \text{-} IzI^n (\alpha_n + \beta_n + \mu) \\ & \geqslant 0 \end{split}$$

If

$$Iz^{k} + \frac{\mu}{a_n}I > IzI^{k-1} \frac{\alpha_n + \beta_n + \mu}{|a_n|}.$$

But this inequality holds if

$$|z|^k - \frac{\mu}{|a_n|} > \frac{\alpha_n + \beta_n + \mu}{|a_n|} \operatorname{IzI}^{k-1}$$
.

Hence all the zeros of f(z) with modulus greater than one lie in the disk $IzI \le K_2$, where K_2 is the greatest root of the equation

$$R^{k} - \frac{\alpha_{n} + \beta_{n} + \mu}{|a_{n}|} R^{k-1} - \frac{\mu}{|a_{n}|} = 0.$$

Again it can be easily verified that $k_2>1$ and therefore all the zeros of f(z) with modulus less than or equal to one are already contained in the disk $IzI \le k_2$. Finally we note that every zero of P(z) is also a zero of f(z), the proof of the Theorem 2 is complete.

Proof of Theorem 3: Consider the polynomial

$$f(z) = (1-z)P(z)$$

$$= -a_{n}z^{n+1} + (a_{n}-a_{n-1})z^{n} + \dots + (a_{n-k+1}-a_{n-k})z^{n-k+1} + (a_{n-k}-a_{n-k-1})z^{n-k} + (a_{n-k-1}-a_{n-k-2})z^{n-k-1} + \dots + (a_{1}-a_{0})z + a_{0}$$

If $|a_{n-k-1}| > |a_{n-k}|$ then $|a_{n-k+1}| > |a_{n-k}|$ and f(z) can be written as

$$f(z) = -a_n z^{n-1} - \mu z^{n-k} + (a_n - a_{n-1}) z^n + \dots + (a_{n-k+1} - a_{n-k}) z^{n-k-1} + (\mu + a_{n-k} - a_{n-k-1}) z^{n-k} + (a_{n-k-1} - a_{n-k-2}) z^{n-k-1} + \dots + (a_1 - a_0) z + a_0$$

For IzI >1

$$\begin{split} |f(z)| &\geq |a_n z^{n+l} + \mu z^{n-k} \mid - IzI^n|(a_n - a_{n-1}) + \ldots + (\frac{a_{n-k+1} - a_{n-k}}{z^{k-1}}) + \frac{(\mu + a_{n-k} - a_{n-k})}{z^k} + \ldots + (\frac{a_1 - a_0}{z^{n-1}}) + \frac{a_0}{z^n}|\\ &\geq IzI^{n-k} \mid a_n z^{k+l} + \mu \mid - IzI^n\{\mid a_n - a_{n-1}\mid + \ldots + \mid \frac{a_{n-k+1} - a_{n-k}}{z^{k-1}}\mid + \mid \frac{\mu + a_{n-k} - a_{n-k}}{z^k}\mid + \ldots + \mid \frac{a_1 - a_0}{z^{n-1}}\mid + \frac{a_0}{z^{n-1}}\mid + \frac{a$$

 $> IzI^{n-k} \mid a_nz^{k+1} + \mu \mid -IzI^n \{ \mid a_{n} - a_{n-1} \mid + \ldots + \mid a_{n-k+1} - a_{n-k} \mid + \mid \mu + a_{n-k} - a_{n-k-1} \mid + \ldots + \mid a_1 - a_0 \mid + \mid a_0 \mid + \mid$

Using lemma 1, this gives

$$\begin{split} |f(z)| &\geq IzI^{n\cdot k} \mid a_nz^{k+1} + \mu |-IzI^n \big\{ (Ia_nI-Ia_{n-1}I)\cos\alpha + (Ia_nI + Ia_{n-1}|)\sin\alpha + (Ia_{n-1}I - Ia_{n-2}I)\cos\alpha + \\ &\quad (Ia_{n-1}I + Ia_{n-2}I)\sin\alpha + \ldots + (Ia_{n-k+1}I - Ia_{n-k}I)\cos\alpha + (Ia_{n-k+1}I + Ia_{n-k}I)\sin\alpha + (I\mu + a_{n-k}I-Ia_{n-k-1}I)\cos\alpha + \\ &\quad (I\mu + a_{n-k}I + Ia_{n-k-1}I)\sin\alpha + \ldots + (Ia_1I-Ia_0I)\cos\alpha + (Ia_1I + Ia_0I)\sin\alpha \big\} + |a_0| \\ &= IzI^{n\cdot k} \mid a_nz^{k+1} + \mu |-IzI^n \big\{ (Ia_nI - Ia_{n-k}I + I\mu + a_{n-k}I - Ia_0I)\cos\alpha + (Ia_nI + 2\sum_{r=o}^n |a_r| - Ia_{n-k}I + I\mu + a_{n-k}I + Ia_0I)\sin\alpha + |a_0| \\ &\geq IzI^{n\cdot k} \mid a_nz^{k+1} + \mu I - IzI^n \big\{ (Ia_nI + I\mu + a_{n-k}I)(\cos\alpha + \sin\alpha) - (Ia_{n-k}I + Ia_0I)\cos\alpha - (Ia_{n-k}I - Ia_0I)\sin\alpha + 2\sin\alpha\sum_{r=o}^n |a_r| + |a_0| \big\} \end{split}$$

> 0,

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) An Online International Journal Available at http://www.cibtech.org/jpms.htm 2012 Vol. 2 (3) July-September pp. 22-28/Kawoosa and Shah

Research Article

If

$$|z^{k+1} + \frac{\mu}{a_n}| > |z|^k \delta$$
,

Where

$$\delta = \frac{(|a_n| + |\mu + a_{n-k}|)(\cos\alpha + \sin\alpha) - (|a_{n-k}| + |a_0|)\cos\alpha - (|a_{n-k}| - |a_0|)\sin\alpha + 2\sin\alpha\sum_{i=0}^{n-1} |a_i| + a_0}{|a_n|}$$

This inequality holds if

$$|z|^{k+1}$$
- $|\frac{\mu}{a_n}| > |z|^k \delta$

This shows that all the zeros of f(z) with modulus greater than one lie in the disk $|z| < k_1$, where k_1 is the greatest positive root of the equation

$$R^{k+1} - \delta R^k - \left| \frac{\mu}{a_n} \right| = 0$$

Also, it is easily seen that $k_1 \ge 1$, and therefore all the zeros of f(z) with modulus less than or equal to one are already in the disk $|z| \le k_1$

Now consider the case
$$|a_{n-k}| > |a_{n-k+1}|$$
, then $|a_{n-k}| > |a_{n-k-1}|$ we have $f(z) = -a_n z^{n-1} - \mu z^{n-k+1} + (a_{n-k-1}) z^{n+1} + (a_{n-k-1} - a_{n-k} + \mu) z^{n-k+1} + (a_{n-k} - a_{n-k-1}) z^{n-k} + (a_{n-k-1} - a_{n-k-2}) z^{n-k-1} + \dots + (a_{1} - a_{0}) z + a_{0}$

For IzI > 1

$$\begin{split} |f(z)| &\geq |a_n z^{n+1} + \mu z^{n-k+1}| - IzI^n|(a_n - a_{n-1}) + \cdots + \left(\frac{a_{n-k+1} - a_{n-k} + \mu}{z^{k-1}}\right) + \left(\frac{a_{n-k} - a_{n-k+1}}{z^k}\right) + \cdots + \left(\frac{a_1 - a_0}{z^{n-1}}\right) + \frac{a_0}{z^n}|\\ &\geq |a_n z^{n+1} + \mu| z^{n-k+1}| - IzI^n\{|a_n - a_{n-1}| + \cdots + |\frac{a_{n-k+1} - a_{n-k} + \mu}{z^{k-1}}| + |\frac{a_{n-k} - a_{n-k+1}}{z^k}| + \cdots + |\frac{a_1 - a_0}{z^{n-1}}| + |\frac{a_0}{z^n}| \}\\ &\geq IzI^{n-k+1}||a_n z^k + \mu| - IzI^n\{|a_n - a_{n-1}| + \cdots + |a_{n-k+1} - a_{n-k} + \mu| + |a_{n-k} - a_{n-k-1}| + \cdots + |a_1 - a_0| + |a_0| \} \end{split}$$

This gives by lemma 1,

$$|f(z)| \ge IzI^{n-k+1} \mid a_nz^k + \mu \mid -IzI^n \{ (Ia_nI - Ia_{n-1}I) cos\alpha + Ia_nI + Ia_{n-1}) sin\alpha + (Ia_{n-1}I - Ia_{n-2}I) cos\alpha + Ia_nI + Ia_{n-1}I - Ia_{n-1}I -$$

 $(Ia_{n\text{-}1}I \ + Ia_{n\text{-}2}I)sin\alpha \ + \ldots + (Ia_{n\text{-}k\text{-}1}I \ - Ia_{n\text{-}k} \ - \mu) \ cos\alpha \ + (Ia_{n\text{-}k\text{-}1}I \ + Ia_{n\text{-}k} \ - \mu I) \ sin\alpha \ + (I \ a_{n\text{-}k}I\text{-}Ia_{n\text{-}k\text{-}1}I) \ cos\alpha \ + (Ia_{n\text{-}k\text{-}1}I \ + Ia_{n\text{-}k} \ - \mu I) \ sin\alpha \ + (Ia_{n\text{-}k\text{-}1}I) \ cos\alpha \ + (Ia_{n\text{-}k\text{-}1}I \ + Ia_{n\text{-}k\text{-}1}I) \ cos\alpha \ + (Ia_{n\text{-}k\text{-}1}I \ + Ia_{n\text{-}k\text{-}1}I \ + Ia_{n\text{-}k\text{-}1}I) \ cos\alpha \ + (Ia_{n\text{-}k\text{-}1}I \ + Ia_{n\text{-}k\text{-}1}I \ +$ $\begin{array}{l} (\ Ia_{n\text{-}k}I + Ia_{n\text{-}k\text{-}1}I)\ sin\alpha + \ldots + (Ia_{1}I - Ia_{0}I)\ cos\alpha + (Ia_{1}I + Ia_{0}I)\ sin\alpha) \ + |a_{0}|, \\ = IzI^{n\text{-}k+1} \mid a_{n}z^{k} + \mu| - IzI^{n}\delta_{1} \end{array}$

$$= \mathbf{I}\mathbf{z}\mathbf{I}^{\mathbf{n}-\mathbf{k}+1} \mid \mathbf{a}_{\mathbf{n}}\mathbf{z}^{\mathbf{k}} + \boldsymbol{\mu} \mid -\mathbf{I}\mathbf{z}\mathbf{I}^{\mathbf{n}}\boldsymbol{\delta}$$

$$|z^k + \frac{\mu}{a_n}| > \delta_1 |z|^{k-1}$$

$$\delta_1 = \frac{(|a_n| - |a_{n-k} - \mu| + |a_{n-k}| - a_0)\cos\alpha - \{(|a_{n-k}| + a_0 - |(|a_{n-k} - \mu| + |a_n| + 2 \sum_{i=0}^{n-1} |a_i|\}\sin\alpha + a_0}{a_n}$$

This above inequality holds if $|z|^k - |\frac{\mu}{a_m}| > \delta_1 |z|^{k-1}$

$$|z|^k - \left|\frac{\mu}{a_n}\right| > \delta_1 |z|^{k-1}$$

This shows that all the zeros of f(z) whose modulus greater than 1 lie in the disk $|z| \le k_2$ where k_2 is the greatest positive root of the equation,

$$R^{k} - \delta_{1} R^{k-1} - |\frac{\mu}{a_{n}}| = 0$$

Again it can be shown that $k_2>1$ and therefore those zeros of f(z) whose modulus is less than or equal to 1also lie in the disk $|z| \le k_2$. Finally we note that every zero of P(z) is also a zero of f(z), and the Theorem 3 is proved completely.

REFERENCES

Aziz A and Zargar BA (1996). Some extensions of Eneström - Kakeya theorem, Glasnik Matematički **31** 239-244.

Choo Y (2011). Further Generalizations of Eneström – Kakeya theorem. *International Journal of Math* Analysis 5(20) 983-995.

Govil NK and Rahman QI (1968). On the Eneström - Kakeya theorem. Tohoku Journal of Mathematics **20** 126-136.

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) An Online International Journal Available at http://www.cibtech.org/jpms.htm 2012 Vol. 2 (3) July-September pp.22-28/Kawoosa and Shah

Research Article

Joyal A, Labelle G and Rahman QI (1967). On the location of zeros of polynomials. *Canadian Journal of Mathematics Bulletin* **10** 55-63.

Marden M (1966). Geometry of polynomials. *Mathematics Surveys No. 3, American Mathematics Society* (RI Providence).

Rahman QI and Schmeisser G (2002). Analytic theory of polynomials, Oxford University Press (New York).