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ABSTRACT 

Similarity solutions are obtained for one-dimensional unsteady adiabatic flow of a dusty gas behind a 
spherical shock wave with time dependent energy input. The dusty gas is assumed to be a mixture of 

small solid particles and a non-ideal gas. It is assumed that the equilibrium flow condition is maintained 

in the flow-field, and that the viscous stress and heat conduction of the mixture are negligible. The 

medium is assumed to be under the gravitational field due to heavy nucleus at the origin (Roche Model). 
The total energy of the flow-field behind the shock is increasing. In order to obtain similarity solutions the 

density of the undisturbed medium is assumed to be constant. The effects of an increase in the mass 

concentration of solid particles pk , the ratio of the density of the solid particles to the initial density of the 

gas 1G , the gravitational parameter 0G  and the parameter of non-idealness of the gas b on the flow-field 

and on the shock-strength are investigated. 

 
Key Words: Shock Wave, Similarity Solutions, Mixture of Non-Ideal Gas and Small Solid Particles, Time 
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INTRODUCTION 
The study of shock waves in a mixture of a gas and small solid particles is of great importance due to its 

applications to nozzle flow, lunar ash flow, bomb blasts, coal-mine blasts, underground, volcanic and 

cosmic explosions, supersonic flights in polluted air, collision of a coma with a planet and many other 
engineering problems [see Pai et al. (1980), Higashino and Suzuki (1980), Miura and Glass (1983), 

Gretler and Regenfelder (2005), Popel and Gisko (2006), Vishwakarma and Nath (2006, 2009), 

Vishwakarma et al. (2008)]. Miura and Glass (1985) obtained an analytical solution for a planar dusty gas 
flow with constant velocities of the shock and the piston moving behind it. As they neglected the volume 

occupied by the solid particles mixed into the perfect gas, the dust virtually has a mass fraction but no 

volume fraction. Their results reflect the influence of the additional inertia of dust on shock propagation. 

Pai et al. (1980) generalized the well-known solution of a strong explosion due to an instantaneous release 
of energy in gas [Sedov (1959), Korobeinikov (1976)] to the case of two-phase flow of a mixture of 

perfect gas and small solid particles, and brought out the essential effects due to the presence of dusty 

particles on such a strong shock wave. As they considered the non-zero volume fraction of solid particles 
in the mixture, their results reflect the influence of both the decrease of mixture’s compressibility and the 

increase of the mixture’s inertia on shock propagation [Steiner and Hirschler (2002), Vishwakarma and 

Nath (2006, 2009)]. 
The perfect gas law can often be applied to actual gases with sufficient accuracy. This approximation, 

may, however, be inadequate in a situation such as arises in the case of an explosion. It is then necessary 

to take into account the deviations of an actual gas from the ideal state which results from the interaction 

between its component molecules. Anisimov and Spiner (1972) have taken an equation of state for non-
ideal gases in a simplified form, and investigated the effect of the parameter for non-idealness on the 

problem of strong point explosions, which describes the behavior of the medium satisfactorily at low 

densities. Ranga Rao and Purohit (1976) have studied the self-similar flow of a non-ideal gas driven by an 
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expanding piston and obtained solutions by taking the equation of state suggested by Anisimov and 

Spiner (1972). In recent years, several studied have been performed concerning the problem of shock 

waves in a mixture of a non-ideal gas and small solid particles, in particular Vishwakarma et al. (2007), 
Vishwakarma and Nath (2009, 2010, 2011) among others. 

Carrus et al. (1951) have studied the propagation of shock waves in a gas under the gravitational 

attraction of a central body of fixed mass (Roche Model) and obtained similarity solutions by numerical 
method. Rogers (1957) has discussed a method for obtaining analytical solution of the same problem. 

Singh (1982) has studied the self-similar flow of a non-conducting perfect gas, moving under the 

gravitational attraction of a central body of fixed mass, behind a spherical shock wave under the 

assumption that the total energy content between the inner expanding surface and the shock front to be 
increasing with time. 

In the present study, we therefore investigated the self-similar flow behind a spherical shock wave 

propagating in a dusty gas, which is a mixture of a non-ideal gas and small solid particles. The medium is 
assumed to be under a gravitational field due to heavy nucleus at the origin (Roche Model). The unsteady 

model consists of the dusty gas distributed with spherical symmetry around a nucleus having a large mass 

m. It is assumed that the gravitational effect of the mixture itself can be neglected compared with the 
attraction of the heavy nucleus. The total energy of the flow-field behind the shock is supposed to be 

increasing with time [Freeman (1968), Director and Dabora (1977)]. This increase can be obtained by the 

pressure exerted on the mixture by inner expanding surface [Rogers (1958)]. In order to obtain the 

similarity solutions of the problem the density of the undisturbed medium is assumed to be constant. It is 

investigated that how the parameter of non-idealness of the gas in the mixture b  (which depends on the 

internal volume of the gas molecules), the mass concentration of solid particles pk , the ratio of the 

density of solid particles to the initial density of the gas 1G  and the gravitational parameter 0G  affect the 

flow-field behind the shock. This work can be treated as extension of the work of Vishwakarma et al. 

(2007) by taking the medium under the gravitation attraction towards the heavy nucleus at the centre.  

 

MATERIALS AND METHODS 

Fundamental Equations and Boundary Conditions 

We consider the medium to be a mixture of small solid particles and a non-ideal gas. The equation of state 
of the non-ideal gas in the mixture is taken to be [Anisimov and Spiner (1972), Ranga Rao and Purohit 

(1976)] 

  ,1* TbRp ggg            (2.1) 

Where gp  and g are the partial pressure and partial density of the gas in the mixture, T is the 

temperature of the gas (and of the solid particles as the equilibrium flow condition is maintained), R* is 

the gas constant and b is the internal volume of the molecules of the gas. In this equation, the deviations 

of an actual gas from the ideal state are taken into account, which results from the interaction between its 
component molecules. It is assumed that the gas is still so rarefied that triple, quadruple etc, collisions 

between molecules are negligible, and their interaction is assumed to occur only through binary collisions. 

The quantity ‘b’ is in general, a function of temperature T, but at high temperature  range it tends to a 
constant value equal to the internal volume of the gas molecules [Anisimov and Spiner (1972), Landau 

and Lifshitz (1958)]. The effects of dissociation and ionization of gas molecules are assumed to be 

negligible. 
The equation of state of the solid particles in the mixture is, simply,  

constantsp ,          (2.2) 
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Where sp is the species density of the solid particles. Proceeding on the same lines as in Pai (1977), we 

obtain the equation of state of the mixture as  

  ,*)1(1
)1(

)1(
TRkb

Z

k
p p

p
 




         (2.3) 

where p and  are the pressure and density of the mixture, 
V

V
Z

sp
  is the volume fraction and 

M

M
k

sp

p   is the mass fraction (concentration) of the solid particles in the mixture, spM  and spV  being, 

respectively, the mass and volumetric extension of the solid particles in a volume V and mass M of the 

mixture. 

The relation between pk  and Z is given by [Pai (1977)] 



 sp

p

Z
k  .           (2.4) 

In equilibrium flow, pk  is constant in the whole flow-field. Therefore, from (2.4) 

constant


Z
           (2.5) 

in the whole flow-field. 

Also we have the relation [Pai (1977)] 

,
)1( pp

p

kkG

k
Z


           (2.6) 

where 
g

sp
G




  is the ratio of the density of solid particles to the species density of the gas. 

The internal energy per unit mass of the mixture may be written as  

  TCTCkCkU VmVpsppm  )1( ,        (2.7) 

where spC  is the specific heat of the solid particles, VC is the specific heat of the gas at constant volume 

and VmC  is the specific heat of the mixture at constant volume process. 

The specific heat of the mixture at constant pressure process is 

ppspppm CkCkC )1(  ,         (2.8) 

where pC  is the specific heat of the gas at constant pressure process. 

The ratio of the specific heats of the mixture is given by (Pai et al., 1980; Pai, 1977; and Marble, 1970) 











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1

1

Vm
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C
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where 
V

p

C

C
 , 

p

p

k

k




1
  and 

V

sp

C

C
 . 

Now, 

 *)1())(1( RkCCkCC pVppVmpm  ,      (2.10) 
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Neglecting the term containing 
22b  (Anisimov and Spiner, 1972; and Singh, 1983). The internal energy 

per unit mass of the mixture is, therefore, given by  

)]1(1)[1(

)1(

p

m
kb

Zp
U







.        (2.11) 

From the first law of thermodynamics and the equation of state (2.3), we may calculate the so called 
equilibrium speed of sound in the mixture of non-ideal gas and small solid particles, as  

2
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where 

S
d
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









denotes the derivative of p with respect to   at constant entropy S. 

The compressibility (adiabatic) of the mixture may be calculated as (Moelwyn-Hughes, 1961) 
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Where


1
v . 

The equations of motion for one-dimensional adiabatic unsteady spherically symmetric flow of a mixture 

of non-ideal gas and small solid particles under the influence of a gravitational field are [Vishwakarma 

(2000), Rogers (1957)] 
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where u is the flow velocity, r the radial distance, t the time, m the mass of heavy nucleus at the centre 

and G* the gravitational constant. Here, it is assumed that the gravitating effect of the medium itself is 

negligible in comparison with the attraction of the heavy nucleus. 
We consider that a spherical shock wave is propagating into a medium (mixture of small solid particles 

and non-ideal gas) of constant density )constant( 1  at rest )0( 1 u . 

The pressure immediately ahead of the shock front is given by, from equation (2.15), 

R

mG
p

*1
1


 ,           (2.17) 

where R is the shock radius. 
The jump conditions across the moving shock are as follows: 
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where 









dt

dR
R  denotes the shock velocity, and subscripts ‘1’ and ‘2’ refer to the values just ahead and 

just behind the shock front. The quantity   is given by the equation 
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where  1bb  ,  
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1bb   is the parameter of non-idealness of the gas in the mixture, M is the shock-Mack number 

referred to the speed of sound in the dust-free ideal gas 
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p
and 1G  the ratio of the density of the 

solid particles to the initial density of gas. 
The total energy E of the flow behind the shock is assumed to be increasing with time as [Rogers (1958), 

Freeman (1968), Director and Dabora (1977)] 
qtEE 0 ,           (2.21) 

where q and 0E are constants. This increase of energy may be achieved by the pressure exerted on the 

fluid by a piston. The piston may be physically, the surface of the stellar corona or the condensed 
explosives or the diaphragm containing a very high-pressure driven gas. By sudden explosion of the 

stellar corona or the detonation products or the driver gas into the ambient gas, a shock wave is produced 

in the ambient gas. The shocked gas is separated from this expanding surface which is a contact 

discontinuity. This contact surface acts as a ‘piston’ for the shock wave. 

Similarity Solutions 

Let us take the solution of the equations (2.14) to (2.16) in the form 
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while k,  , a and b are constants. We choose the shock front to be given by constant0  . This choice 

fixes the velocity of the shock surface as  
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which represents an outgoing shock if a<0 (b>0). 
The total energy E of the disturbance consists of three parts, namely, the heat energy, the kinetic energy 

and the gravitational energy. Hence the total energy 
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where pr  is the radius of the inner contact surface or piston. 

 Now using the transformations 
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equation (3.4) becomes 
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 being the parameter of gravitation and px  being the value of x at the inner 

expanding surface. 

 Using the equations (2.21) and (3.3) in the equation (3.6), we obtain, 
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Also from equation (3.2), 
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Comparing the equations (3.8) and (3.9), we get 

a

bq




5

2
.           (3.10) 

By direct substitution of (3.1) in the shock conditions and equations of motion, we find that our solutions 
are consistent with the similarity conditions if  
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Using the transformations (3.5), the equations of motion (2.14) to (2.16) take the form  
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            (3.14) 
The equations (3.12) to (3.14) which give the solution of our problem, are consistent with similarity 

conditions only if the parameter 
2M  occurring in the equations (3.13) and (3.14) is independent of t. This 

requires that  
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Comparing (3.10) and (3.15), we obtain 
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which corresponds to a decreasing velocity shock. This shows that the similarity solution of the present 

problem exists only when the total energy of the flow-field behind the shock increases as 3
4

t . 

Without any loss of generality we may choose 
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In terms of dimensionless variables x, W, Y and g the shock conditions take the form 
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Now, the equations (3.19) to (3.21) may be integrated numerically with boundary conditions (3.18) to 
obtain the values of W, Y and g. 

 

RESULTS AND DISCUSSION 

To obtain the solutions, we start numerical integration of the equations (3.19) to (3.21) from the shock 

front )1( x and proceed inwards until the inner expanding surface )( pxx  is reached. Values of the 

flow variables W, Y, g are obtained for ,2.0,0;1.0,05.0,0;4.1  pkb  0.4; 
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14.0,014.0;100,1 2

1  MG [see Pai et al. (1980), Miura and Glass (1985) and Vishwakarma et al. 

(2007)], and solutions are shown in Figures 1 to 3 and 5 to 7. The case ,0b 0pk corresponds to a 

mixture of a perfect gas and small solid particles; and the case 0b , 0pk  to a mixture of a non-ideal 

gas and small solid particles. 

The quantity 0G  which is a parameter of gravitation depends on   and M and is tabulated in Table 1 for 

4.1 and 14.0,014.02 M . The density ratio   across the shock front and position of the inner 

expanding surface px are tabulated in Table 2 for various values of 1, Gk p  and 0G  with 05.0b . 

These quantities are also shown in Table 3 for various values of b  and 0G  with 2.0pk  and 11 G . 

 

Table 1: Values of  0G  (a parameter of gravitation) for different values of 
2M  and 4.1  

2M  0G  

0.014 0.01 

0.014 0.10 

     

Table 2: Density ratio   across the shock front and position of the inner expanding surface px  for 

different values of 1, Gk p  and 0G with 05.0b  

pk  
1G  0G    px  

0 - 
0.01 

0.10 

0.211972 

0.318813 

0.896933 

0.838660 

 

 

0.2 

1 

 

0.01 

0.10 

0.333858 

0.439710 

0.853050 

0.789144 

100 
0.01 

0.10 

0.179194 

0.283390 

0.912301 

0.855514 

 

 

0.4 

1 
0.01 

0.10 

0.479309 

0.581108 

0.791082 

0.719498 

100 
0.01 

0.10 

0.145261 

0.246666 

0.928566 

0.873143 

  

Table 3: Density ratio   across the shock front and position of the inner expanding surface px  for 

different values of b  and 0G with 2.0pk  and 11 G  

b  0G    px  

 

0 

0.01 

0.10 

0.321724 

0.424138 

0.858818 

0.796848 

 

0.05 

0.01 
0.10 

0.333858 
0.439710 

0.853050 
0.789144 

 

0.1 

0.01 

0.10 

0.344813 

0.453561 

0.847711 

0.782080 

 

Figures 1 and 5 show that the velocity W is higher at the inner expanding surface than that at the shock 

front. In fact, the velocity of the inner expanding surface is higher than the fluid velocity just behind the 
shock due to increasing energy input given by equation (2.21). 
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Figures 2, 3, 6 and 7 show that the density g and the pressure Y decrease as we move inwards from the 

shock front to the inner expanding surface, in general. 

The behavior of the curves 7 and 8 in figures 1 to 3 is somewhat different from others. For curves 7 and 8, 

11 G  and 4.0pk ; and therefore 40 percent of the volume is occupied by small solid particles causing 

a heavy loss in compressibility of the dusty gas. This fact is responsible for the different behavior of 
curves 7 and 8. The loss of compressibility of the medium also results in the increase of the distance of 

the inner expanding surface from the shock front, i.e. in the decrease of the value of px
 (see Table 2). 

The behavior of compressibility of the medium for different values of 1, Gk p . 
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0G  and b  may be seen in Figures 4 and 8 in which we have drawn profiles of a dimensionless 

compressibility l(x), defined by 
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It is found that the effects of an increase in the mass concentration of solid particles pk  are: 

 To decrease the shock strength (i.e. to increase the value of  ) when 11 G ; and to increase it when 

1001 G (see Table 2); 

 To increase the distance of the inner expanding surface from the shock front when 11 G and to 

decrease that when 1001 G  (see table 2); 

  To decrease the velocity W and the compressibility l for 11 G  and to increase those for 

1001 G (see Figures 1 and 4); 

  To increase the density g and the pressure Y for 11 G  and to decrease those for 1001 G  (see 

Figures 2 and 3). 

An increase in 1G  greatly influences the flow variables for higher values of pk (see Figures 1, 2 and 3). 

Also, an increase in 1G  decreases the distance of the inner expanding surface from the shock front and 

hence increases the shock strength. Further, an increase in 1G  increases the dimensionless 

compressibility l (see Figure 4). Physically, this increase in l causes more compression of the medium 
behind the shock, which results in the increase of the shock strength.  

The effects of an increase in the value of the gravitational parameter 0G  are: 

 To increase the value of  , i.e. to decrease the shock strength (see Tables 2 and 3); 

 To increase the distance of inner expanding surface from the shock front (see Tables 2 and 3). This 

means that an increase in the value of gravitational parameter has an effect of decreasing the shock 

strength, which is the same as indicated in (i) above; 

 To decrease the velocity W and to increase the density g and the pressure Y at any point in the flow field 

behind the shock (see Figures 1 to 3 and 5 to 7). 

 The effects of on increase in the value of the parameter of the non-idealness of the gas b  are: 

 To increase the value of  , i.e. to decrease the shock strength (see Table 3); 

 To increase the distance of inner expanding surface from the shock front (see Table 3); 

  To decrease the velocity W but to increase the density g and the pressure Y at any point in the flow-

field behind the shock (see Figures 5 to 7). 

Actually, an increase in b , decreases the compressibility of the medium (see Figure 8) and this decrease 

of compressibility results in the decrease of shock strength. 
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