SOME PROPERTIES OF THE (M, λ_n) METHOD OF SUMMABILITY IN ULTRAMETRIC FIELDS

*P N Natarajan

Old No. 2/3, New No. 3/3, Second Main Road, R.A. Puram Chennai 600 028, India *Author for Correspondence

ABSTRACT

In the present paper, K denotes a complete, non-trivially valued, ultrametric field. Infinite matrices, sequences and series have entries in K. The purpose of this paper is to prove some interesting properties of the (M, λ_n) method (or the M-method), introduced earlier by Natarajan (2002), in such a field K.

2000 Mathematics Subject Classification: 40, 46.

Key Words: Regular summability method, the (M, λ_n) method (or the *M*-method), consistency, limitation theorem, inclusion theorem, equivalence, Tauberian theorem

INTRODUCTION

Throughout the present paper, K denotes a complete, non-trivially valued, ultrametric field. Infinite matrices, sequences and series have entries in K.

Given an infinite matrix $A = (a_{nk})$, n, k = 0, 1, 2, ... and a sequence $x = \{x_k\}$, k = 0, 1, 2, ..., by the A-transform of the sequence $x = \{x_k\}$, we mean the sequence $A(x) = \{(Ax)_n\}$, where

$$(Ax)_n = \sum_{k=0}^{\infty} a_{nk} x_k, \quad n = 0, 1, 2, ...,$$

it being assumed that the series on the right converge. If $\lim_{n\to\infty} (Ax)_n = \ell$, we say that $x = \{x_k\}$ is summable A or A-summable to ℓ . If $\lim_{n\to\infty} (Ax)_n = \ell$, whenever $\lim_{k\to\infty} x_k = \ell$, we say that the matrix method A is regular. The following theorem, which gives necessary and sufficient conditions for A to be regular in terms of its entries, is well-known (see, for instance, Monna (1963)).

Theorem 1.1. $A = (a_{nk})$ is regular if and only if

(i) $\sup_{n,k} |a_{nk}| < \infty$; (ii) $\lim_{n \to \infty} a_{nk} = 0, \quad k = 0, 1, 2, ...;$

and

(iii) $\lim_{n\to\infty}\sum_{k=0}^{\infty}a_{nk}=1.$

An infinite series $\sum_{k=0}^{\infty} x_k$ is said to be A-summable to ℓ if $\{s_n\}$ is A-summable to ℓ where $s_n = \sum_{k=0}^n x_k$, n = 0, 1, 2, ...

The M-method of summability was introduced earlier by Natarajan and some of its properties were studied in Natarajan (2002). Since the M-method depends on a sequence $\{\lambda_n\}$ in K, we shall henceforth call the M-method as (M, λ_n) method. In the present paper, we shall study some interesting properties of the (M, λ_n) method.

Definition 1.1. Let $\{\lambda_n\}$ be a sequence in K such that $\lim_{n\to\infty} \lambda_n = 0$. The (M, λ_n) method is defined by the infinite matrix $A = (a_{nk})$, where

$$a_{nk} = \begin{cases} \lambda_{n-k}\,, & k \leq n\,;\\ 0, & k > n\,. \end{cases}$$

Remark 1.1. In this context, we note that the (M, λ_n) method reduces to the Y-method of Srinivasan (see Srinivasan (1965)), when $K = \mathbb{Q}_p$, $\lambda_0 = \lambda_1 = \frac{1}{2}$ and $\lambda_n = 0$, $n \ge 2$.

REGULARITY, CONSISTENCY AND LIMITATION THEOREMS

Theorem 2.1. The method (M, λ_n) is regular if and only if $\sum_{n=0}^{\infty} \lambda_n = 1$.

Proof. Let (M, λ_n) be regular. Since $\lim_{n \to \infty} \lambda_n = 0$, $\sum_{n=0}^{\infty} \lambda_n$ converges.

Now,
$$\lim_{n\to\infty}\sum_{k=0}^{\infty}a_{nk} = 1$$
. i.e.,
$$\lim_{n\to\infty}\sum_{k=0}^{n}\lambda_{n-k} = 1$$
, i.e.,
$$\lim_{n\to\infty}\sum_{k=0}^{n}\lambda_{k} = 1$$
. Conversely, if
$$\sum_{n=0}^{\infty}\lambda_{n} = 1$$
,
$$\lim_{n\to\infty}\sum_{k=0}^{\infty}a_{nk} = \lim_{n\to\infty}\sum_{k=0}^{n}\lambda_{k} = \sum_{k=0}^{\infty}\lambda_{k} = 1$$
.
Since
$$\lim_{n\to\infty}\lambda_{n} = 0$$
,
$$\lim_{n\to\infty}a_{nk} = \lim_{n\to\infty}\lambda_{n-k} = 0$$
,
$$k = 0, 1, 2, \dots$$
.
Since $\{\lambda_{n}\}$ is bounded, it follows that
$$\sup_{n,k}|a_{nk}| < \infty$$
. In view of Theorem 1.1,
 $(M, \lambda_{n}) = (a_{nk})$ is regular.

Definition 2.1. Two matrix methods $A = (a_{nk})$, $B = (b_{nk})$ are said to be consistent, if whenever $x = \{x_k\}$ is A-summable to s and B-summable to t, then s = t.

Theorem 2.2. Any two regular methods (M, λ_n) , (M, μ_n) are consistent.

Proof. Let (M, λ_n) , (M, μ_n) be two regular methods. Then $\lim_{n\to\infty} \lambda_n = \lim_{n\to\infty} \mu_n = 0$. Let $\gamma_n = \lambda_0 \mu_n + \lambda_1 \mu_{n-1} + \dots + \lambda_n \mu_0$, $n = 0, 1, 2, \dots$. Let $u_n = \lambda_n x_0 + \lambda_{n-1} x_1 + \dots + \lambda_0 x_n \rightarrow s$, $n \rightarrow \infty$ and $v_n = \mu_n x_0 + \mu_{n-1} x_1 + \dots + \mu_0 x_n \rightarrow t$, $n \rightarrow \infty$. Now,

$$\begin{split} w_{n} &= \gamma_{0} x_{n} + \gamma_{1} x_{n-1} + \dots + \gamma_{n} x_{0} \\ &= (\lambda_{0} \mu_{0}) x_{n} + (\lambda_{0} \mu_{1} + \lambda_{1} \mu_{0}) x_{n-1} + \dots + (\lambda_{0} \mu_{n} + \lambda_{1} \mu_{n-1} + \dots + \lambda_{n} \mu_{0}) x_{0} \\ &= \lambda_{0} \left[\mu_{0} x_{n} + \mu_{1} x_{n-1} + \dots + \mu_{n} x_{0} \right] + \lambda_{1} \left[\mu_{0} x_{n-1} + \mu_{1} x_{n-2} + \dots + \mu_{n-1} x_{0} \right] \\ &+ \dots + \lambda_{n} \left[\mu_{0} x_{0} \right] \\ &= \lambda_{0} v_{n} + \lambda_{1} v_{n-1} + \dots + \lambda_{n} v_{0} \\ &= \left[\lambda_{0} (v_{n} - t) + \lambda_{1} (v_{n-1} - t) + \dots + \lambda_{n} (v_{0} - t) \right] + t (\lambda_{0} + \lambda_{1} + \dots + \lambda_{n}). \end{split}$$
Since $\lim_{n \to \infty} \lambda_{n} = 0 = \lim_{n \to \infty} (v_{n} - t), \\ &\lim_{n \to \infty} \left[\lambda_{0} (v_{n} - t) + \lambda_{0} (v_{n} - t) + \dots + \lambda_{n} (v_{0} - t) \right] = 0. \end{split}$

$$\lim_{n\to\infty} \left[\lambda_0(\mathbf{v}_n - \mathbf{t}) + \lambda_1(\mathbf{v}_{n-1} - \mathbf{t}) + \dots + \lambda_n(\mathbf{v}_0 - \mathbf{t}) \right] = 0,$$

in view of Theorem 1 of Natarajan (1978). Thus

$$\lim_{n\to\infty} w_n = t \sum_{n=0}^{\infty} \lambda_n = t,$$

since $\sum_{n=0}^{\infty} \lambda_n = 1$, (M, λ_n) being regular, using Theorem 2.1. In a similar fashion, we can prove that lim $w_n = s$, so that s = t. Consequently (M, λ_n), (M, μ_n) are consistent.

that $\lim_{n\to\infty} w_n = s$, so that s = t. Consequently (M, λ_n), (M, μ_n) are consistent.

Theorem 2.3. (Limitation theorem) If $\{x_n\}$ is (M, λ_n) summable, where $|\lambda_n| < |\lambda_0|$, $n \ge 1$, then $\{x_n\}$ is bounded.

Proof. Note that, since $|\lambda_0| > |\lambda_1|$, $\lambda_0 \neq 0$. Let

 $u_n=\lambda_0\;x_n+\lambda_1\;x_{n-1}+\dots+\lambda_n\;x_0,\quad n=0,\;1,\;2,\;\dots\;.$ Then $\{u_n\}$ converges and so bounded. Thus $|u_n|\leq M,\;n=0,\;1,\;2,\;\dots\;.$

so that

$$\left|\mathbf{x}_{0}\right| \leq \left|\frac{\mathbf{u}_{0}}{\boldsymbol{\lambda}_{0}}\right| \leq \frac{\mathbf{M}}{\left|\boldsymbol{\lambda}_{0}\right|}.$$

 $u_0 = \lambda_0 x_0$

Let now

$$\begin{split} \left| x_{k} \right| &\leq \frac{M}{\left| \lambda_{0} \right|}, \quad k = 0, 1, 2, ..., (n-1). \\ \lambda_{0} x_{n} &= \lambda_{1} x_{n-1} + \lambda_{2} x_{n-2} + \cdots + \lambda_{n} x_{0} - u_{n}, \\ \left| \lambda_{0} x_{n} \right| &\leq \max \left\{ \left| \lambda_{0} \right| \frac{M}{\left| \lambda_{0} \right|}, M \right\} = M, \end{split}$$

from which it follows that $|x_n| \le \frac{M}{|\lambda_0|}$. This completes the induction. Thus $\{x_n\}$ is bounded.

Consequently we have the following result.

Theorem 2.4. A power series $\sum_{n=0}^{\infty} a_n x^n$ is not (M, λ_n) summable outside its circle of convergence, where $|\lambda_n| < |\lambda_0|$, $n \ge 1$.

Proof. Let $\sum_{n=0}^{\infty} a_n x^n$ be (M, λ_n) summable at $x = x_0$. Then using Theorem 2.3, there exists M > 0such that

$$|\mathbf{a}_{n}| |\mathbf{x}_{0}|^{n} \le \mathbf{M},$$

i.e., $|\mathbf{a}_{n}| \le \frac{\mathbf{M}}{|\mathbf{x}_{0}|^{n}},$
i.e., $|\mathbf{a}_{n}|^{\frac{1}{n}} \le \frac{\mathbf{M}^{\frac{1}{n}}}{|\mathbf{x}_{0}|}.$

So

$$\begin{split} \overline{\lim_{n \to \infty}} \left| a_n \right|^{\frac{1}{n}} \leq & \frac{1}{\left| x_0 \right|}, \quad \text{since} \quad \lim_{n \to \infty} M^{\frac{1}{n}} = 1, \\ & \text{i.e.,} \quad \frac{1}{\rho} \leq & \frac{1}{\left| x_0 \right|}, \\ & \text{i.e.,} \quad \left| x_0 \right| \leq \rho, \end{split}$$

 ρ being the radius of convergence, proving the theorem.

INCLUSION THEOREM AND EQUIVALENCE

K(x) denotes the ultrametric algebra of all formal power series $\sum_{n=0}^{\infty} \alpha_n x^n$ for which $\lim_{n \to \infty} \alpha_n = 0$ under the norm

$$\left\|\sum_{n=0}^{\infty}\alpha_{n}x^{n}\right\| = \sup_{n\geq 0} |\alpha_{n}|.$$

The following lemma was proved in Van Rooij (1978) (p. 233, Corollary 6.39).

Lemma 3.1. An element $f(x) = \sum_{n=0}^{\infty} \alpha_n x^n$ of K(x) is invertible if and only if $|\alpha_n| < |\alpha_0|$, n = 1, 2, ...

Theorem 3.1. (Inclusion theorem) Let (M, λ_n) , (M, μ_n) be given methods where $|\lambda_n|$ < $|\lambda_0|$, n = 1, 2, Then (M, λ_n) \subseteq (M, μ_n), i.e., whenever $\{s_n\}$ is summable

(M, λ_n) to s, then it is also summable (M, μ_n) to s, if and only if $\sum_{n=0}^{\infty} k_n = 1$ where $\frac{\mu(x)}{\lambda(x)} = k(x) = \sum_{n=0}^{\infty} k_n x^n$.

Proof. Let $\lambda(x) = \sum_{n=0}^{\infty} \lambda_n x^n$, $\mu(x) = \sum_{n=0}^{\infty} \mu_n x^n$. The series on the right converge for |x| < 1, since $\lim_{n \to \infty} \lambda_n = 0 = \lim_{n \to \infty} \mu_n$. Since $|\lambda_n| < |\lambda_0|$, $n = 1, 2, ..., \lambda(x)$ is invertible in view of Lemma 3.1. Let $\{u_n\}, \{v_n\}$ be the $(M, \lambda_n), (M, \mu_n)$ transforms of $\{s_n\}$ respectively. If |x| < 1,

$$\begin{split} \sum_{n=0}^{\infty} v_n x^n &= \sum_{n=0}^{\infty} (\mu_0 s_n + \mu_1 s_{n-1} + \dots + \mu_n s_0) x^n \\ &= \left(\sum_{n=0}^{\infty} \mu_n x^n \right) \left(\sum_{n=0}^{\infty} s_n x^n \right) \\ &= \mu(x) s(x). \end{split}$$

Similarly

$$\sum_{n=0}^{\infty} u_n x^n = \lambda(x) s(x), \quad \text{if } |x| < 1.$$

Now,

$$k(x) \lambda(x) = \mu(x),$$

$$k(x) \lambda(x) s(x) = \mu(x) s(x),$$

i.e.,
$$k(x) \left(\sum_{n=0}^{\infty} u_n x^n \right) = \sum_{n=0}^{\infty} v_n x^n.$$

Thus

$$\mathbf{v}_{n} = \mathbf{k}_{0}\mathbf{u}_{n} + \mathbf{k}_{1}\mathbf{u}_{n-1} + \dots + \mathbf{k}_{n}\mathbf{u}_{0}$$
$$= \sum_{j=0}^{\infty} \mathbf{a}_{nj}\mathbf{u}_{j},$$

where

$$a_{nj} = \begin{cases} k_{n-j}, & j \leq n; \\ 0, & j > n. \end{cases}$$

If $(M, \lambda_n) \subseteq (M, \mu_n)$, (a_{nj}) is regular. So $\lim_{n \to \infty} a_{n0} = 0$,

i.e.,
$$\lim_{n \to \infty} k_n = 0$$
 and so $\sum_{n=0}^{\infty} k_n$ converges. Also $\lim_{n \to \infty} \sum_{j=0}^{\infty} a_{nj} = 1$,
i.e., $\lim_{n \to \infty} \sum_{j=0}^{n} k_{n-j} = 1$, i.e., $\lim_{n \to \infty} \sum_{j=0}^{n} k_j = 1$,

i.e., $\sum_{n=0}^{\infty} k_n = 1$. Conversely, if $\sum_{n=0}^{\infty} k_n = 1$, then it follows that (a_{nj}) is regular and so $\lim_{j \to \infty} u_j = s$ implies $\lim_{n \to \infty} v_n = s$, i.e., $(M, \lambda_n) \subseteq (M, \mu_n)$, completing the proof of the theorem.

As a consequence of Theorem 3.1, we have

Theorem 3.2. Let (M, λ_n) , (M, μ_n) , be given methods with $|\lambda_n| < |\lambda_0|$, $|\mu_n| < |\mu_0|$, $n \ge 1$. Then (M, λ_n) and (M, μ_n) are equivalent, i.e., $(M, \lambda_n) \subseteq (M, \mu_n)$ and vice versa, if and only if $\sum_{n=0}^{\infty} k_n = \sum_{n=0}^{\infty} h_n = 1$ where $\frac{\mu(x)}{\lambda(x)} = k(x) = \sum_{n=0}^{\infty} k_n x^n$ and $\frac{\lambda(x)}{\mu(x)} = h(x) = \sum_{n=0}^{\infty} h_n x^n$.

TAUBERIAN THEOREMS

We need the following result in the sequel.

Theorem 4.1. (see Natarajan (1997), Theorem 1) Let A be any regular matrix method and $\sum_{n=0}^{\infty} a_n$ be A-summable to s. Let $\lim_{n\to\infty} a_n = \ell$. If A({n}) diverges, then $\sum_{n=0}^{\infty} a_n$ converges to s. In other words, $\lim_{n\to\infty} a_n = \ell$ is a Tauberian condition provided A({n}) diverges.

As a consequence of Theorem 4.1, we now have

Theorem 4.2. If $\sum_{n=0}^{\infty} a_n$ is (M, λ_n) summable to s, (M, λ_n) being regular and if $\lim_{n \to \infty} a_n = \ell$, then $\sum_{n=0}^{\infty} a_n$ converges to s. *Proof.* In view of Theorem 4.1, it suffices to prove that $\{n\}$ is not summable by the regular (M, λ_n)

Proof. In view of Theorem 4.1, it suffices to prove that $\{n\}$ is not summable by the regular (M, λ_n) method.

Let

$$u_n = \lambda_0 \cdot n + \lambda_1 \cdot (n-1) + \dots + \lambda_{n-1} \cdot 1 + \lambda_n \cdot 0.$$

Then

$$\begin{split} u_n - u_{n-1} &= \{\lambda_0 \ . \ n + \lambda_1 \ . \ (n-1) + \dots + \lambda_{n-1} \ . \ 1\} - \{\lambda_0 \ . \ (n-1) + \lambda_1 \ . \ (n-2) + \dots + \lambda_{n-2} \ . \ 1\} \\ &= (\lambda_0 + \lambda_1 + \dots + \lambda_{n-1}). \end{split}$$

So

$$\lim_{n\to\infty} \left(u_n - u_{n-1} \right) = \sum_{n=0}^{\infty} \lambda_n = 1,$$

 (M, λ_n) being regular. Thus $\{u_n\}$ is not cauchy and so diverges, i.e., $\{n\}$ is not summable (M, λ_n) , completing the proof.

We now introduce the following.

Definition 4.1. Let $s = \{s_0, s_1, s_2, ...\}, \bar{s} = \{0, s_0, s_1, ...\}, s^* = \{s_1, s_2, ...\}$. A summability method A is said to be translative if \bar{s} and s^* are summable to ℓ whenever s is summable to ℓ .

Theorem 4.3. Every (M, λ_n) method is translative.

Proof. Writing
$$A \equiv (M, \lambda_n)$$
,
 $(A\overline{s})_n = \lambda_n . 0 + \lambda_{n-1} . s_0 + \lambda_{n-2} . s_1 + \dots + \lambda_0 . s_{n-1}$
 $= \lambda_{n-1} . s_0 + \lambda_{n-2} . s_1 + \dots + \lambda_0 . s_{n-1}$
 $= u_{n-1}$,

where

$$u_{n} = \lambda_{n} \cdot s_{0} + \lambda_{n-1} \cdot s_{1} + \dots + \lambda_{0} \cdot s_{n}, \quad n = 0, 1, 2, \dots$$

So, if $u_{n} \rightarrow \ell$, $n \rightarrow \infty$, then $(A \bar{s})_{n} \rightarrow \ell$, $n \rightarrow \infty$. Also
 $(As^{*})_{n} = \lambda_{n} \cdot s_{1} + \lambda_{n-1} \cdot s_{2} + \dots + \lambda_{0} \cdot s_{n+1}$
 $= (\lambda_{n+1} \cdot s_{0} + \lambda_{n} \cdot s_{1} + \dots + \lambda_{0} \cdot s_{n+1}) - \lambda_{n+1}s_{0}$
 $= u_{n+1} - \lambda_{n+1} \cdot s_{0}$
 $\rightarrow \ell$, $n \rightarrow \infty$, since $u_{n+1} \rightarrow \ell$, $n \rightarrow \infty$ and $\lambda_{n} \rightarrow 0$, $n \rightarrow \infty$.
Thus the method (M, λ_{-}) is translative

I hus the method (M, Λ_n) is translative.

Using Theorem 3 of Natarajan (1997), we now have the following result.

Theorem 4.4. If $\sum_{n=0}^{\infty} a_n$ is summable to s by a regular (M, λ_n) method and $\lim_{n\to\infty} (a_{n+1} - a_n) = \ell$, then $\sum_{n=0}^{\infty} a_n$ converges to s.

Using Theorem 5 of Natarajan (1997), we have the following result for regular (M, λ_n) method.

Theorem 4.5. If $\sum_{n=1}^{\infty} a_n$ is summable by a regular (M, λ_n) method, then the following Tauberian conditions are equivalent: (i) $a_n \to \ell, n \to \infty$; (ii) $\Delta a_n \equiv a_{n+1} - a_n \rightarrow \ell', n \rightarrow \infty$. If, further, $a_n \neq 0$, n = 0, 1, 2, ..., each of (iii) $\frac{a_{n+1}}{a_n} \rightarrow 1, n \rightarrow \infty;$ and (iv) $\frac{a_{n+2} + a_n}{a_{n+1}} \rightarrow 2, n \rightarrow \infty$

is a weaker Tauberian condition for the summability of $\sum_{n=0}^{\infty} a_n$ by a regular (M, λ_n) method.

REFERENCES

Bachman G (1964). Introduction to p-adic numbers and valuation theory (Academic Press). **Hardy GH (1949).** Divergent Series (Oxford University Press).

Monna AF (1963). Sur le théorème de Banach-Steinhaus. Indagationes Mathématicae 25 121-131.

Natarajan PN (1978). Multiplication of series with terms in a non-archimedean field, Simon Stevin **52** 157–160.

Natarajan PN (1997). Some Tauberian theorems in non-archimedean fields. In: p-adic functional analysis Vol. 192 (Marcel Dekker) 297–303.

Natarajan PN (2002). Some properties of the Y-method of summability in complete ultrametric fields. *Annales Mathematiques Blaise Pascal* **9**(1) 79–84.

Srinivasan VK (1965). On certain summation processes in the p-adic field. *Indagationes Mathématicae* 27 319–325.

Van Rooij ACM (1978). Non-archimedean functional analysis (Marcel Dekker).