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ABSTRACT 
A four and five-tupple chain pendulum system constrained to move in a plane(X, Y,0) has been studied 
within the framework of a generalized coordinate system by using an abridged Lagrangian formalism. 
The Lagrangian is developed and used to get the equations of motion which are further solved using 
eigenvalue relations.  In an ideal case of a non-viscous motion, a series of combinations of pendulum 
units remains a salient feature of this work. As a rule, it is generally observed that the angular acceleration 
for any mass is influenced by the masses and angles of the immediate neighbour-masses.         
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INTRODUCTION 
The study of the equations of motion for n-tupple pendulum systems can be explored using Newtonian 
mechanics. This is extensively used for the dynamics of masses in the determination of the dynamical 
variables. It is the limitation of the Newtonian approach that led to the introduction of the use of the 
energy dependent Lagrangian approach. Generalized co-ordinates formalism exhibits domino effects to 
easy evaluation of various quantities like velocities, forces and momenta. Attempts have been made by 
scholars to obtained equations of motion and their solutions for multiple pendulum systems using the 
Lagrangian formulation (Spiegel, 1967; Chow, 1995). There are limited initiatives to advance studies of 
motions of many-body pendulum system (n-tupple pendula System, where n 3) fixed at one end and 
connected in series, one after another via an inextensible string. The approach of the generalized co-
ordinates depends on the angle of inclications, θi, in two dimensions. 
There has been an extensive study of coupled systems as new qualitative systems save for the theoretical 
challenges involved in the investigations of such systems (Hedrih, 1999, 2007). Free vibrations of a 
multi-pendulum system inter-coupled by standard light elements and different properties have been 
explored in which the obtained analytical solutions are numerically analyzed (Hedrih, 2008). Annotations 
have been made on counter – intuitive phenomenon of a driven inverted chain consisting of N linked 
pendulums balanced on top of one another in which the amplitudes diminishes with the number of 
pendulums involved in the chain (Acheson, 1993, 2005; Acheson et al., 1993). 
Numerous extensions of pendulum systems have been proposed and studied which includes various 
categories of elastic pendulum models and multi-body pendulum models (Furuta et al., 1993, 1984; 
Spong et al., 2001). The initial conditions in the agreement protocol can be manipulated to produce 
results that satisfy linear constraints and the same can apply to the control of a distributed network of 
linearized pendula on a line graph topology (Nedic et al., 2008).  
At the outset of this study, Spiegel (1969) worked on two mass pendulum system in which the masses as 
well as their lengths of separation were equal in magnitude.  Chow (1995) handled a double pendulum 
with uneven quantities using the Lagrange method. Jones et al., (2011) gave more information about the 
examination of chaos variation in multiple pendulum systems with different amounts of energy. They 
strongly speculated that for varying masses and lengths, the problem becomes complex with increase in 
mass units. Furuta et al., (1993, 1984), successfully worked on the control of the multiple pendulums of 
varying constraints and further discussed the swing-up control of pendulum units by considering the 
reach-ability of an unstable nonlinear control. Joot (2009) noted that by introducing additional mass in a 
system, the interaction coupling terms increases thus complicating the kinetic energy specifications noting 
that calculating the energy explicitly for a general n-pendula system is likely to be pedantic for even the 
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most punishing instructor to inflict on students as a problem. This statement is what basically triggered 
our curiosity and forms the basis of our work.   
We have been able to give a quantitative study of a multiple pendula system through rigorous exercises. 
Unnoticeable work may have been done on these systems but not for mass units more than three. There 
are unique possibilities of advancing studies in n-tupple pendulum systems by Lagrange method to which 
we eagerly are embracing. A comprehensive study and contributions on systems of four and five masses 
suspended and connected in series by light inextensible pieces of thread at relatively small angles of 
inclination to the vertical by using Lagrange method has been done. This work covers all the aspects of 
suspended masses in series for four and five pendulum systems using the Lagrange method. We have 
restricted our work to a series of multiple- pendulum system oscillating in a plane. The approach is 
pegged on the derivation of equations of motion using the energy in the systems. We deviate from the 
traditional classical mechanics method that is anchored on the concept of force which becomes more 
complex even for a few masses. Apart from its intrinsic utility as a timing device, the pendulum is a 
superb learning tool for science education. It serves as a model for study of the linear oscillators.  
 
THEORETICAL DERIVATIONS 
The Lagrangian was developed to simplify the achievement of solutions to equations of motion using the 
difference in the kinetic energy and the potential energy for such bodies in motion. In this approach we 
need to find the degrees of freedom that would fit the situation and thus give a general view point. 
Generally force can be related to the kinetic energy by the equation   
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where L=T-V is the Lagrangian and iq  & iq  are the generalized coordinates for position and momentum 

respectively. For conservative systems, 0 i , reducing equation (1) to   
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Equations of motion depends on the degrees of freedom hence the need to use generalized Lagrangian so 
as to be applicable to as many masses as possible. This has been done in order to take care of the 
possibility of having various combinations of equal or unequal masses, lengths and angles of inclination 
to the vertical.  
 
The kinetic energy and potential energy terms for three masses have been calculated to be as given in 
equations (3) and (4) respectively as shown below. 
푇 = 푚 푙 휃̇ sin 휃 + 푙 휃̇ cos 휃 + 푚 푙 휃̇ sin 휃 + 2푙 푙 휃̇ 휃̇ sin휃 sin휃 +

푙 휃̇ sin 휃 + 푙 휃̇ cos 휃 + 2푙 푙 휃̇ 휃̇ cos 휃 cos 휃 + 푙 휃̇ cos 휃 +

푚 푙 휃̇ sin 휃 + 푙 휃̇ sin 휃 + 푙 휃̇ sin 휃 + 2푙 푙 휃̇ 휃̇ sin휃 sin휃 +

2푙 푙 휃̇ 휃̇ sin휃 sin휃 + 2푙 푙 휃̇ 휃̇ sin휃 sin휃 +
푙 휃̇ cos 휃 + 푙 휃̇ cos 휃 + 푙 휃̇ cos 휃 + 2푙 푙 휃̇ 휃̇ cos 휃 cos 휃 +

2푙 푙 휃̇ 휃̇ cos 휃 cos 휃 + 2푙 푙 휃̇ 휃̇ cos 휃 cos휃                   
                                                                                                                                            (3) 
푉 = 푚 푔{푙 + 푙 + 푙 − 푙 cos 휃 } + 푚 푔{푙 + 푙 + 푙 − (푙 cos 휃 + 푙 cos 휃 )} + 푚 푔{푙 + 푙 + 푙 −
(푙 cos 휃 + 푙 cos 휃 + 푙 cos휃 )}                                                                           (4) 
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where im is the ith mass, il is the ith length and i  is the ith angle of inclination. Equations (3) and (4) give 
the Lagragian as   
퐿 = 푚 푙 휃̇ + 푚 푙 휃̇ + 푙 휃̇ + 2푙 푙 휃̇ 휃̇ cos(휃 − 휃 ) + 푚 푙 휃̇ + 푙 휃̇ + 푙 휃̇ +

2푙 푙 휃̇ 휃̇ cos(휃 − 휃 ) + 2푙 푙 휃̇ 휃̇ cos(휃 − 휃 ) + 2푙 푙 휃̇ 휃̇ cos(휃 − 휃 ) −푚 푔{푙 + 푙 + 푙 −
푙 cos 휃 } −푚 푔{푙 + 푙 + 푙 − (푙 cos 휃 + 푙 cos 휃 )} −푚 푔{푙 + 푙 + 푙 − (푙 cos 휃 + 푙 cos 휃 +
푙 cos 휃 )}                                                                     (5) 
The Lagragian used  in  equation (2) generates equations of motion for three uneven quantities as given in 
equations (6), (7) and (8); 
                     휃̈ = ( )

{(푚 + 푚 )휃 − (푚 + 푚 + 푚 )휃 }푔                 (6)  

                       휃̈ = (푚 + 푚 + 푚 )휃 − ( )( ) 휃 + 푚 휃 푔   (7) 

                       휃̈ = {(푚 + 푚 )(휃 − 휃 )}푔                                             (8) 
A special case of equal masses and distances gives the following equations 
                       휃̈ = (2휃 − 3휃 )                       (9)  
                       휃̈ = (3휃 − 4휃 + 휃 )                                       (10) 
                    휃̈ = 2(휃 − 휃 )                                          (11) 
Eigen formulae in equations (12), (13) and (14) were then used to get the solutions of the equations of 
motion.    
         λ + 1 = 0       (for one mass)                                                                             (12) 
        2λ + 4λ + 1 = 0      (for two equal masses)                                                     (13) 
                    6λ + 18λ + 9λ + 1 = 0      (for three equal masses)                                        (14) 
Similar calculations, for special cases of equal masses and lengths, were done to get the following sets of 
equations of motion for four and five masses respectively 
                                                   4휃̈ + 3휃̈ + 2휃̈ + 휃̈ = −4휃 푔

푙 
 3휃̈ + 3휃̈ + 2휃̈ + 휃̈ = −3휃 푔

푙 
                                                   2휃̈ + 2휃̈ + 2휃̈ + 휃̈ = −2휃 푔

푙        
                                                   휃̈ + 휃̈ + 휃̈ + 휃̈ = −휃 푔

푙        (15) 
 

              5휃̈ + 4휃̈ + 3휃̈ + 2휃̈ + 휃̈ = −5휃 푔
푙 

                             4휃̈ + 4휃̈ + 3휃̈ + 2휃̈ + 휃̈ = −4휃 푔
푙 

             3휃̈ + 3휃̈ + 3휃̈ + 2휃̈ + 휃̈ = −3휃 푔
푙 

                                                        2휃̈ + 2휃̈ + 2휃̈ + 2휃̈ + 휃̈ = −2휃 푔
푙           

                                                        휃̈ + 휃̈ + 휃̈ + 휃̈ + 휃̈ = −휃 푔
푙   

                                                                                                                                       (16)  
DISCUSSION AND CONCLUSION  
We deduce that(푤ℎ푒푟푒 푚 = 푚 ;  푙 = 푙 ;   휃 ≠ 휃 ), the motion of any mass 푚  depends in an implicit 
manner, on the motions of the nearest neighbours  푚  and 푚  other than itself. This pattern does not 
apply for the first and the last masses, which had only one neighbor each. The angular acceleration 휃̈  for 
any mass 푚  will depend upon its own angle 휃  and the angles of the nearest neighbours 휃  and 휃 . 
The chaotic nature increases as the links of the multiple pendulum system increases. This is because more 
links increases more terms to the equations that form components of the Lagrangian causing the system to 
rely heavily on the initial conditions. It will be interesting to develop equations for all combinations of 
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varying masses, length and angles of inclinations. These may easily establish a pattern that can enable one 
to get equations of motion for n-tupple pendulum system. This study enables one to understand motions 
of cross coupled systems of any degrees of freedom at varying complexions of mechanical misalignment. 
We intend to make a communication on a more generalized n-tupple pendulum system as soon as an 
acceptable model is developed. This may particularly be more appreciable in the study of central force 
systems. 
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