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ABSTRACT 
The Maxwell-Boltzmannian approach to nuclear reaction rate theory is extended to cover Tsallis statistics 
(Tsallis 1988) and more general cases of distribution functions. An analytical study of respective 
thermonuclear functions is being conducted with the help of statistical techniques. The pathway model, 
recently introduced by Mathai (1993), is utilized for thermonuclear functions and closed-form 
representations are obtained in terms of H -functions and G -functions. Maxwell-Boltzmannian 
thermonuclear functions become particular cases of the extended thermonuclear functions. A brief review 
on the development of the theory of analytic representations of nuclear reaction rates is given. 
 
INTRODUCTION  
In the evolution of the Universe, chemical elements are created in cosmological and stellar 
nucleosynthesis (Clayton 1983 and Fowler 1984). Solar nuclear energy generation and solarneutrino 
emission are governed by chains of nuclear reactions in the gravitationally stabilized solar fusion reactor 
(Davis 2003). One of the first utilization of Gamow’s quantum mechanical theory of potential barrier 
penetration to other than the analysis of radioactive decay was to the question on how do stars generate 
energy (Critchfield 1972) for a brief essay on the history of this discovery see Mathai and Haubold 
(1998). Continued attempts are aiming at generating energy through controlled thermonuclear fusion in 
the laboratory. In nuclear plasma, the rate of reactions and thus energy releases can be determined by an 
average of the Gamow penetration factor over the distribution of velocities of the particles of the plasma 
(Haubold and Mathai 1984). Understanding the mathematical and statistical methods for the evaluation of 
thermonuclear reaction rates is one of the goals of research in the field of stellar and cosmological 
nucleosynthesis. Practically all applications of fusion plasmas are controlled in some way or another by 
the theory of thermonuclear reaction rates under specific circumferences. After several decades of effort, 
a systematic and complete theory of thermonuclear reaction rates has been developed (Haubold and John 
1978, Anderson et al., 1994, Haubold and Mathai 1984, Mathai and Haubold 1973). Reactions between 
individual particles produce a randomization of the energy and velocity distributions of particles. The 
depletion of particles by reactions is balanced by the diffusion of the particles in the macroscopically 
inhomogeneous medium. As a result of this balance, the fusion plasma may reach a quasi-stationary state 
close to equilibrium, in which steady of matter, energy, and momentum are present. This also led to the 
assumption that the distribution of particles can be assumed to be Maxwell-Boltzmannian in almost all 
cases of interest to stellar physics and cosmology. 
The derivation of closed-form representations of nuclear reaction rates and useful approximations of them 
are based on statistical distribution theory and the theory of generalized special functions, mainly in the 
categories of Meijer’s G  -function and Fox’s H -function. For an overview on the application and 
historical background of integrals and distribution functions for reaction rates and their representation in 
terms of special functions, see Hegyi (1999) and Moll (2002). Special cases which can be derived from 
the general theory through expansion of respective physical parameters (like the cross section factor) are 
resonant (Hussein and Pato 1997, Ueda et al., 2001) and resonant (Udea et al., 2004, Newton et al., 2007) 
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reaction rates, reaction rates for cosmological nucleosynthesis (Bergstroem et al., 1999) and fitting of 
experimental data to analytic representations (Brown and Jarmie 1998). Specify mathematical methods 
for deriving approximate analytic representations of nuclear reaction rates are expansions of 
hypergeometric functions ( Saigo and Saxena 1998), transformation of extended gamma functions (Aslam 
Chaudhary 2002), and asymptotic expansion of the Laplace transform of functions (Ferreira and Lopez 
2004). 
Only recently, related to the production of neutrinos in the gravitationally stabilized solar fusion reactor, 
the question of possible derivations of the velocity distribution of plasma particles from the Maxwell-
Boltzmannian case due to memory effects and long-range forces has been raised (Coraddu et al., 1999, 
Lavagno and Quarati 2002, Coraddu et al., 2003, Lissia and Quarati 2005, Lavagno and Quarati 2006). 
This was initiated by Tsallis non-additive generalization of Boltzmann-Gibbs statistical mechanics which 
generates q-exponential function as the fundamental distribution function instead of the Maxwell-
Boltzmann distribution function. Tsallis statistics covers Boltzmann-Gibbs statistics for the case 1q   
(Tsallis 1988, Gell-Mann and Tsallis 2004, Tsallis 1988). This paper develops the complete theory for 
closed-form representations of nuclear reaction rates for Tsallis statistics. In this context an interesting 
discovery was made by Mathai (1993), namely that even more general distribution functions can be 
incorporated in the theory of nuclear reaction rates by appealing to entropic and distributional pathways. 
Starting from generalized entropy of order , through the maximum entropy principle, distribution 
functions are generated which include Maxwell-Boltzmann and Tsallis distributions as special cases. 
In subsections 1.1, 1.2, 1.3 and 1.4, we introduce the definition of the thermonuclear reaction rate and 
respective thermonuclear functions for the standard, cut-off, depleted, and screened case, respectively. 
Each subsection provides the integral of the thermonuclear function for the cases of Maxwell-Boltzmann 
distribution and  distribution, the latter covers the q-exponential of Tsallis. Section 2 provides 
prerequisites for the use of G - and H - functions in Mellin-Barnes integral representation and also 
discusses briefly the pathway model of Mathai. Section 3 elaborates the closed-form representation of the 
thermonuclear functions for the case of Maxwell-Boltzmann and  distributions in terms of G - and H -
functions. Section 4 provides conclusions. 
From (Mathai and Haubold 1998) it can be seen that the expression for the reaction rate ijr of the reacting 
particles i and j taking place in a nondegenerate environment is 

    
1 32 2

0

8 1 ( )
E
kT

ij i jr n n E E e dE
kT





      

  
                                                        (1.1) 

          = i jn n    

Where in and jn are the number densities of the particles i and j , the reduced mass of the particles is 

denoted by ,i j

i j

m m
T

m m
 


is the temperature, k is the Boltzmann constant, the reaction cross section is 

( )E and the kinetic energy of the particles in the center of mass system is 
2

2
vE 

 where v is the 

relative velocity of the interacting particles i and j . 
The reaction probability is written in the form v  to indicate that it is an appropriate average of the 
product of the reaction cross section and relative velocity of the interacting particles. For detailed physical 
interpretations see Haubold and Mathai (1984). 
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Standard Non-Resonant Thermonuclear Function 
For non-resonant nuclear reactions between two nuclei of charges iz and jz colliding at low energies 
below the Coulomb barrier, the reaction cross section has the form Mathai and Haubold (1998) 

          2 ( )( )( ) ES EE e
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With            
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Where ( )E is the Sommerfeld parameter,  is the Planck’s quantum of action, e is the quantum of 
electric charge, the cross section factor ( )S E is often found to be a constant or a slowly varying function 
of energy over a limited range of energy ( Mathai and Haubold 1998). The cross section factor ( )S E may 
be expressed in terms of the power series expansion, 
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Where Ex
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 and 
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The collision probability integral, called thermonuclear function, for non-resonant thermonuclear 
reactions in the Maxwell-Boltzmannian case is Haubold and Mathai (1984) 
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We will consider here the general integral 
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Non-Resonant Thermonuclear Function with High Energy Cut-Off 
Usually, the thermonuclear fusion plasma is assumed to be in thermodynamic equilibrium. But if there 
appears a cut-off of the high energy tail of the Maxwell-Boltzmann distribution function in (1.3) then the 
thermonuclear function is given by 
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Again we consider the general form of the integral (1.5) as 
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For physical reasons for the cut-off modification of the Maxwell-Boltzmann distribution function of the 
relative kinetic energy of the reacting particles refer to the paper (Haubold and Mathai 1984). 
Non-Resonant Thermonuclear Function with Depleted Tail  
A depletion of the high energy tail of the Maxwell-Boltzmann distribution function of the relative kinetic 
energies of the niclei of the fusion plasma is discussed in Haubold and Mathai (1984). 
For the thermonuclear function, in comparison to the strict Maxwell-Boltzmannian case, we have the 
integral 
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We will consider the general integral of the type 
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Where 0, 0, 0, 0z a b     . 
Non-Resonant Thermonuclear Function with Screening 
The plasma correction to the fusion process due to a static or dynamic potential, i.e. .The electron 
screening effects for the reacting particles, the collision probability integral to be evaluated in the case of 
the screened non-resonant nuclear reaction rate is see Haubold and Mathai (1984) 
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In this case we consider the general integral as 
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Where t is the electron screening parameter. 
In the following, we are evaluating the thermonuclear reaction probability integrals by a using pathway 
model (Mathai 1993). In section 2 we give the basic definitions that we require in this paper. We evaluate 
the integral 1I and 2I by implementing Mathai’s pathway model and represent each of them in terms of 

H -function and G -function in section 3. 
Mathematical Preliminaries 
We need some basic quantities for our discussion, which will be defined here. The Gamma function 
denoted by ( )z for complex number z is defined as 
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Where Re(.) denotes the real part of (.). In general ( )z exists for all values of z , positive or negative, 
except at the point 0,1,2,...z  . These are the poles of ( )z . But the integral representation holds for the 
real part of z to be positive. Another important result we need is the multiplication formula. If z is any 
complex number, 0,1, 2,...z  and let m be a positive integer then the multiplication formula for Gamma 
functions is  
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For 2m  we get the duplication formula for Gamma functions, 
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The Mellin transform of a real scalar function ( )f x with parameter s is defined as 
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Whenever ( )fM s exists. If 1( )f x and 2 ( )f y are integrable functions on the positive real and if 

1( )kx f x and 2 ( )ky f y are absolutely integrable, then the Mellin convolution property is defined as 
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Then the Mellin transform of 3f denoted by 
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  Re( ) 0,Re( ) 0   . 
The type-2 Beta integral is defined as 
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  Re( ) 0,Re( ) 0   . 
The G -function which is originally due to see Meijer (1936), Mathai (1993) Mathai and Saxena (1973) is 
defined as a Mellin-Barnes type integral as follows: 
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The H -function is defined in terms of a Mellin-Barnes type integral as 
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For further details of H -function, we refer to the original paper of Buschman and Srivastava (1990). 
Next we utilize the pathway model of Mathai (1993). When fitting a model to experimental data very 
often one needs a model for a distribution function from a given parametric family, or sometimes we may 
have a situation of the right tail cut-off. In order to take care of these situations and going from one 
functional from to another, a pathway parameter  is introduced, see Mathai [1993] and Mathai and 
Haubold [2007]. By this model we can proceed from a generalized type-1 beta model to a generalized 
type-2 beta model to a generalized gamma model when the variable is restricted to be positive. For the 
real scalar case the pathway model is the following, 

1
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Where c is the normalizing constant and  is the pathway parameter. When 1  the model becomes a 
generalized type-1 beta model in the real case. This is a model with the right tail cut-off. When 1  we 
have 1 ( 1), 1       so that 
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Which is a generalized type-2 beta model for real x . When 1  the above two forms will reduce to 
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Observe that the normalizing constant c appearing in (2.13), (2.14) and (2.15), are different. 
Evaluation Of The Integrals Of Thermonuclear Functions 
Now we will evaluate the integrals 1I and 2I by introducing the pathway model. 
Evaluation of 1I  
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
        

. 

              
2

1

0

( ) s y
fM s y e dy




      

Putting y t  , we get 

                
2

1

0

1( )
s

t
fM s t e dt



 
   

                                =
1 , Re( ) 0s s
 

 
  
 

                                                               (3.5) 

From (3.4) and (3.5) 
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3

1( )
11( )
1[ ( 1)]

1

f s

ss s
M s

a 

 
 

 




             
    

 

Then the density of u denoted by 3 ( )f u is available from the inverse Mellin transform. 

 3
1 1 1( ) ( )

1 2 1[ ( 1)]
1

c i

c i

sf u s s
ia 

 
   



 

 

                   

  

                      [ ( 1) ] sa u ds                                                                                       (3.6) 
Comparing (3.3) and (3.6)  

1
1 1

0

[1 ( 1) ] bxx a x e dx
 




    

  =
1 11 ,1;12,1 1

1,2 1( ,1), 0,

1 ( 1) , 1
1[ ( 1)]

1

H a b
a


 

 

 
 



    
 
 
 

 
  

        

 

Therefore, 

  
1 11 ,1;12,1 1

1,21 1( ,1), 0,

1 ( 1) , 1
1[ ( 1)]

1

I H a b
a


 


 

 
 



    
 
 
 

 
   

        

 

Where 0, 0, 0, 0, 1,Re( ) 0,Re( ) 0a b s s           . Note that when 11, I   becomes 1I
. But 1I  contains all neighborhood solutions for various values of  for 1  . 
Special Cases 

If 
1


is an integer then put
1 m

 . Using equation (2.2) we get 

  

1
12 1 ;11,1 1

1, 11 1 10, ,..., ,

(2 ) ( 1)
1[ ( 1)]

1

m
mm

m mm
m m

m a bI G
ma




 

 





     

 

 
  

       

 

Where 0, 0, 0, 1a b      . 
In the thermonuclear function for a non-resonant thermonuclear reaction in the Maxwell-Boltzmannian 

case 11 , 1,
2

a      , then by using (2.3) we get, 

  
12 1 1;13,1 1

1,31 10, , 11 2

1 ( 1)
1 4[ ( 1)]

1

bI G
a












     



 
  

       

 

Where 0, 0, 1b     . 
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Evaluation Of 2I  

Replace axe  by 
1

11 (1 )a x    . As 1  , 
1

11 (1 )a x    becomes axe 
. Let us denote the two 

integrals by ( )
2

dI and ( )
2

dI   respectively. 

 ( ) 1
2

0

, 0, 0, 0, 0
d

d ax bxI x e dx a b
  

        

   
1

( ) 1 1
2

0

[1 (1 ) ]
d

d bxI x a x e dx
 

 
     

Where 1 , 1, 0, 1,1 (1 ) 0, 0, 0
(1 )

d a a x b
a

   


        


.For convenience of integration let 

us assume that
1

(1 )
d

a 



. Then ( )

2
dI  is the product of two integrable functions. Hence we can apply 

Mellin convolution property for finding the value of the integral. Here let us take 
1

1 1[1 (1 ) ] 0 , 0, 0, 1
(1 )

1 0,( )
x a x for x a

a
otherwisef x

   


      


 


                                                                 (3.7) 

 0 , 0
2 0,( )

ye for y
otherwisef y


                                                                                         (3.8) 

From (2.5) we have 

 1 1 2
0

1 ( ) yI f x f dx
x x

    
 

 
 

        =
1

1 1

0

1[1 (1 ) ]
(1 )

d
u xx a x e dx where d

a
  


   

  

        =
1

1 1

0

[1 (1 ) ] , 1bxx a x e dx where b u
  




                                                (3.9) 

The Mellin transform of ( )
3 2

df I  is the product of the Mellin transforms of 1f and 2f  
                 

3 1 2
( ) ( ) ( )f f fM s M s M s  

             
1

1
(1 ) 1

1 1

0

( ) [1 (1 ) ]
a

s
fM s x a x dx


 


      

Putting (1 )a x t  , we get 

       
1

1 1
1 1

0

1( ) (1 )
[ (1 )]

s
f sM s t t dt

a
 


  

 
   

                       =

1( ) 1
1 1 ,Re( ) 0, 1

1[ (1 )] 1
1

s

s
s

a s



  

 




         
       

                    (3.10) 
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Where
1Re( ) 0,Re 0, 1

1
s s  


        

.   

From equation (3.5) we get     

                 
2

1( ) , Re( ) 0f
sM s s

 
 

   
 

                                                          (3.11) 

From (3.10) and (3.11) 

       
3

1( ) 1
11( )

1[ (1 )] 1
1

f s

ss
M s

a s



 

  




            
       

 

Then the density of u denoted by 3 ( )f u is available from the inverse Mellin transform. 

 3

1 ( )1
11( ) [ (1 ) ]

1[ (1 )] 2 1
1

c i
s

c i

ss
f u a u ds

a i s



 

   


 


 

             
       


                       (3.12)

                                                                                                                      

Comparing (3.9) and (3.13)  
1

1 1

0

[1 (1 ) ]
d

bxx a x e dx
 

    

  =
1 11 ,12,0 1

1,2 1( ,1), 0,

1 1
1 (1 ) , 1

[ (1 )]
H a b

a


 






  
 

    
 
 
 

         
   

 Therefore, 

  
1 11 ,12,0( ) 1

1,22 1( ,1), 0,

1 1
1 (1 )

[ (1 )]
dI H a b

a


 

 




 
 

    
 
 
 

         
   

 

Where 0, 0, 0, 0, 1,a b        1  . 

Special Cases 

If 
1


is an integer then put
1 m

 . Then following through the same procedure as before one has 

  

1
2

111,1( ) 1
1, 12 1 10, ,..., ,

1(2 ) 1
(1 )1

[ (1 )]

m

mmd
m mm

m m

m
a bI G

a m



  








     
 

        
   

 

Where 0, 0, 0, 1a b      . 
For the thermonuclear function for non-resonant thermonuclear reactions with high energy cut-off

11 , 1,
2

a      , then we get, 
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12 23,0( ) 1

1,32 11 0, , 1
2

1 1
(1 )1

4[ (1 )]
d bI G

a




  


 

    
 

        
   

 

Where 0, 0, 1b     . The importance of the above result is that ( )
2

dI  gives an extension of the 

integral ( )
2

dI to a wider class of integrals through the pathway parameter , and their solutions. 
 
CONCLUSION 
In the field of stellar, cosmological, and controlled fusion, for example, the core of the Sun is considered 
as the gravitationally stabilized solar fusion reactor. The probability for a thermonuclear reaction to occur 
in the solar fusion plasma depends mainly on two factors. One of them is the velocity distribution of the 
particles in the plasma and is usually given by the Maxwell-Boltmann distribution of Boltmann-Gibbs 
statistical mechanics. The other factor is the particle reaction cross-section that contains the dominating 
quantum mechanical tunneling probability through a Coulomb barrier, called Gamow factor. Particle 
reactions in the hot solar fusion plasma will occur near energies where the product of velocity distribution 
is a maximum. The product of velocity distribution function and penetration factor is producing the 
Gamow peak. Mathematically, the Gamow peak is a thermonuclear function. In case of taking into 
consideration electron screening of reactions in the hot fusion plasma, the Coulomb potential may change 
to a Yukawa-like potential. Taking into account correlations and long-range forces in the plasma, the 
Maxwell-Boltzmann distribution may show deviations covered by the distribution predicated by Tsallis 
statistics in terms of cut-off or depletion of the high-velocity tail of the distribution function. In this paper, 
closed-form representations have been derived for thermonuclear functions, thus for the Gamma peak, for 
Boltzmann-Gibbs and Tsallis statistics. For this purpose, generalized entropy of order  and the 
respective distribution function have been considered. The case 1  recovers the Maxwell-Boltzmann 
case. This general case is characterized by moving cut-off, respectively the upper integration limit of the 
thermonuclear function to infinity. The closed-form representations of thermonuclear functions are 
achieved by using generalized hypergeometric functions or H -functions and G -functions, respectively. 
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