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ABSTRACT  
A layer of Rivlin-Ericksen viscoelastic fluid heated from below is considered in the presence of uniform 
vertical rotation. Following the linearized stability theory and normal mode analysis, the paper 
mathematically established the condition for characterizing the oscillatory motions which may be neutral 
or unstable, for rigid boundaries at the top and bottom of the fluid. It is established that all non-decaying 
slow motions starting from rest, in a Rivlin-Ericksen viscoelastic fluid of infinite horizontal extension and 
finite vertical depth, which is acted upon by uniform vertical rotation, opposite to gravity and a constant 
vertical adverse temperature gradient, are necessarily non-oscillatory, in the regime 

                                                                  1
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2


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where AT  is the Taylor number and F is the viscoelasticity parameter. The result is important since it hold 
for all wave numbers and for horizontal rigid boundaries of infinite extension at the top and bottom of the 
fluid, and the exact solutions of the problem investigated in closed form, is not obtainable.  
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INTRODUCTION 
Stability of a dynamical system is closest to real life, in the sense that realization of a dynamical system 
depends upon its stability. Right from the conceptualizations of turbulence, instability of fluid flows is 
being regarded at its root. The thermal instability of a fluid layer with maintained adverse temperature 
gradient by heating the underside plays an important role in Geophysics, interiors of the Earth, 
Oceanography and Atmospheric Physics, and has been investigated by several authors Bénard, (1900); 
Rayleigh, (1916); Jeffrey,(1926). under different conditions. A detailed account of the theoretical and 
experimental study of the onset of Bénard Convection in Newtonian fluids, under varying assumptions of 
hydrodynamics and hydromagnetics, has been given by Chandrasekhar, (1981). The use of Boussinesq 
approximation has been made throughout, which states that the density changes are disregarded in all 
other terms in the equation of motion except the external force term. Bhatia and Steiner, (1972) have 
considered the effect of uniform rotation on the thermal instability of a viscoelastic (Maxwell) fluid and 
found that rotation has a destabilizing influence in contrast to the stabilizing effect on Newtonian fluid. 
The thermal instability of a Maxwell fluid in hydromagnetics has been studied by Bhatia and Steiner, 
1973). They have found that the magnetic field stabilizes a viscoelastic (Maxwell) fluid just as the 
Newtonian fluid. Sharma, (1976) has studied the thermal instability of a layer of viscoelastic (Oldroydian) 
fluid acted upon by a uniform rotation and found that rotation has destabilizing as well as stabilizing 
effects under certain conditions in contrast to that of a Maxwell fluid where it has a destabilizing effect.  
In another study Sharma, (1975) has studied the stability of a layer of an electrically conducting Oldroyd 
fluid, (1958) in the presence of magnetic field and has found that the magnetic field has a stabilizing 
influence. 
There are many elastic-viscous fluids that cannot be characterized by Maxwell’s constitutive relations or 
Oldroyd’s, (1958) constitutive relations. Two such classes of fluids are Rivlin-Ericksen’s and Walter’s 
(model B’) fluids.  Rivlin-Ericksen, (1955) have proposed a theoretical model for such one class of 
elastic-viscous fluids. Sharma and kumar, (1996) have studied the effect of rotation on thermal instability 
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in Rivlin-Ericksen elastico-viscous fluid and found that rotation has a stabilizing effect and introduces 
oscillatory modes in the system. Kumar et al., (2006) considered effect of rotation and magnetic field on 
Rivlin-Ericksen elastico-viscous fluid an found that rotation has stabilizing effect, where as magnetic field 
has both stabilizing and destabilizing effects. A layer of such fluid heated from below or under the action 
of magnetic field or rotation or both may find applications in geophysics, interior of the Earth, 
Oceanography, and the atmospheric physics. 
Pellow and Southwell, (1940) proved the validity of PES for the classical Rayleigh-Bénard convection 
problem. Banerjee et al., (1981) gave a new scheme for combining the governing equations of 
thermohaline convection, which is shown to lead to the bounds for the complex growth rate of the 
arbitrary oscillatory perturbations, neutral or unstable for all combinations of dynamically rigid or free 
boundaries and, Banerjee and Banerjee, (1984) established a criterion on characterization of non-
oscillatory motions in hydrodynamics which was further extended by Gupta et al,.(1986). However no 
such result existed for non-Newtonian fluid configurations, in general and for Rivlin-Ericksen viscoelastic 
fluid configurations, in particular. Banyal, (2011) have characterized the non-oscillatory motions in 
couple-stress fluid.  
Keeping in mind the importance of Rivlin-Ericksen viscoelastic fluids, as stated above, this article 
attempts to study Rivlin-Ericksen viscoelastic fluid heated from below in the presence of uniform vertical 
rotation, with rigid boundaries and it has been established that the onset of instability in a Rivlin-Ericksen 
viscoelastic fluid heated from below, in the presence of uniform vertical rotation, cannot manifest itself as 
oscillatory motions of growing amplitude if the Taylor number AT  and the viscoelasticity parameter F, 

satisfy the inequality, 1
)1(

4

2


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
 FTA , for all wave numbers and for horizontal rigid boundaries of 

infinite extension at the top and bottom of the fluid. 
 
FORMULATION OF THE PROBLEM AND PERTURBATION EQUATIONS 
Considered an infinite, horizontal, incompressible electrically conducting Rivlin-Ericksen viscoelastic  
fluid layer, of thickness d, heated from below so that, the temperature and density at the bottom surface z 
= 0  are 0T and 0  and at the upper surface z = d are dT and d  respectively, and that a uniform adverse 

temperature gradient 

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  is maintained. The fluid is acted upon by a uniform vertical 

rotation  


,0,0 , parallel to the force field of gravity  gg 


,0,0 . 
      The equation of motion, continuity and heat conduction, governing the flow of Rivlin-Ericksen 
viscoelastic fluid in the presence of rotation (Rivlin and Ericksen (1955); Chandrasekhar (1981) and 
Kumar et al (2006) are: 

    





 





































 


 



qq
t

grpqq
t
q

o

21
2
1. 2'

0

2






,        (1)          

                                                       0. 


q ,                                                           (2) 

                                                   TTq
t
T 2).( 

 

 ,                                           (3)                                                                               



International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) 
An Online International Journal Available at http://www.cibtech.org/jpms.htm  
2012 Vol. 2 (2) April- June, pp.58-64/Banyal 
Research Article 

60 
 

 

Where  , p, T, , ' and  wvuq ,,


 denote respectively the density, pressure, temperature, kinematic 

viscosity, kinematic viscoelasticity and velocity of the fluid, respectively and ),,( zyxr


.                                                                     
     The equation of state for the fluid is 
                               00 1 TT   ,                                                                         (4) 

Where the suffix zero refer to the values at the reference level z = 0. Here  gg 


,0,0  is acceleration due 
to gravity and   is the coefficient of thermal expansion. In writing the equation (1), we made use of the 
Boussinesq approximation, which states that the density variations are ignored in all terms in the equation 
of motion except the external force term. The thermal diffusivity  is assumed to be constant. 
          The initial state is one in which the velocity, density, pressure, and temperature at any point in the 
fluid are, respectively, given by 

             0,0,0


q  ,  z  , p=p(z), T= T(z),                                                          (5)                                                                                                                                            

Assume small perturbations around the basic solution and let  , p ,  , and  wvuq ,,


 denote 

respectively the perturbations in density  , pressure p, temperature T and velocity )0,0,0(


q . The change 
in density  , caused mainly by the perturbation   in temperature, is given by 
             000 1  TT ,  i.e.    0 .                          (6)                                                                                             
                 Then the linearized perturbation equations are 
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Within the framework of Boussinesq approximation, equations (6) - (9) , become 
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NORMAL MODE ANALYSIS                                
Analyzing the disturbances into normal modes, we assume that the Perturbation quantities are of the form 
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             zZzzWw ,,,,  exp  ntyikxik yx  ,                                                 (13)                                                         

Where yx kk ,  are the wave numbers along the x- and y-directions, respectively,  2
1

22
yx kkk  , is the 

resultant wave number, and n is the growth rate which is, in general, a complex constant. 
Using (13), equations (10) – (12), in non-dimensional form transform to 
           DZTRaWaDFaD A 22222 1  ,                                                  (14)                                                                                        
          DWZaDF   221 ,                                                                            (15) 
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Where we have introduced new coordinates  ',',' zyx  = (x/d , y/d, z/d) in new units of length d and 

'/ dzdD  . For convenience, the dashes are dropped hereafter. Also we have substituted 
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,  and dDD  , and dropped    for convenience. 

We now consider the case where both the boundaries are rigid and perfectly conducting and are 
maintained at constant temperature, then the perturbations in the temperature are zero at the boundaries. 
The appropriate boundary conditions with respect to which equations (14)-(16), must possess a solution 
are 
     W = DW = 0, 0  and Z=0 at z = 0 and z = 1.                                                            (17)                                           
Equations (14)-(16), along with boundary conditions (17), pose an eigenvalue problem for   and we 
wish to characterize  i  when 0r . 
We first note that since W  and Z  satisfy  )1(0)0( WW   and )1(0)0( ZZ   in addition to 
satisfying to governing equations and hence we have from the Rayleigh-Ritz inequality (1973) 
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Further, for )1(0)0( WW   and )1(0)0( ZZ  , Banerjee et al (1992) have show that 
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MATHEMATICAL ANALYSIS 
We prove the following lemma: 
Lemma 1:  For any arbitrary oscillatory perturbation, neutral or unstable 
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Proof: Further, multiplying equation (15) with its complex conjugate, and integrating by parts each term 
on both sides of the resulting equation for an appropriate number of times and making use of boundary 
condition on Z  namely )1(0)0( ZZ   along with (17), we get 
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And on utilizing the inequalities (19) and (20), equation (21) gives 
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We prove the following theorem: 
Theorem 1: If  R  0 , F  0, AT 0, 0r  and 0i  then the necessary condition for the existence of 
non-trivial solution   ZW ,,  of  equations  (16), (17) and (18) together with boundary conditions (19)  
is that 
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Proof: Multiplying equation (14) by  W  (the complex conjugate of W) throughout and integrating 
the resulting equation over the vertical range of z, we get 
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Taking complex conjugate on both sides of equation (16), we get 
    WpaD 1
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Therefore, using (24), we get  
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Also taking complex conjugate on both sides of equation (15), we get 
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Therefore, using (26) and appropriate boundary condition (17), we get  
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Substituting (25) and (27) in the right hand side of equation (23), we get 
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Integrating the terms on both sides of equation (25) for an appropriate number of times by making use of 
the appropriate boundary conditions (19), along with (17), we get  
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And equating imaginary parts on both sides of equation (29), and cancelling )0(i  throughout, we get 
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Now R   0, F  0 and AT  0, utilizing the inequalities (19, (20) and (22), the equation (30) gives,  
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Where 

        
1

0

1

0

2
1

2
1

0

22242222
1 2 dzpRadzWadzWaDWaWDFI , 

Is positive definite.                                                                                                                                                       
and therefore , we must have 
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Hence, if 

                 0r  And 0i , then 1
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And this completes the proof of the theorem. 
Presented otherwise from the point of view of existence of instability as stationary convection, the above 
theorem can be put in the form as follow:- 
Theorem 2: The sufficient condition for the validity of the ‘exchange principle’ and the onset of 
instability as a non-oscillatory motions of non-growing amplitude in a Rivlin-Ericksen viscoelastic fluid 

heated from below, in the presence of uniform vertical rotation is that 1
)1(
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
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 FTA , where AT  is the 

Taylor number and F is the viscoelasticity parameter, for horizontal rigid boundaries of infinite extension 
at the top and bottom of the fluid. 
or 
The onset of instability in a Rivlin-Ericksen viscoelastic fluid heated from below, in the presence of 
uniform vertical rotation, cannot manifest itself as oscillatory motions of growing amplitude, if the Taylor 

number AT   and the viscoelasticity parameter F, satisfy the inequality, 1
)1(

4

2




 FTA , for horizontal 

rigid boundaries of infinite extension at the top and bottom of the fluid. 
Special Case: When the viscoelasticity parameter F = 0, then 



International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) 
An Online International Journal Available at http://www.cibtech.org/jpms.htm  
2012 Vol. 2 (2) April- June, pp.58-64/Banyal 
Research Article 

64 
 

 

14 


AT
,  

and then the Rivlin-Ericksen viscoelastic fluid behaves like an ordinary Newtonian fluid and we retrieve 
the result of (Gupta et al (1986)). 
 In the context of existence of instability in ‘oscillatory modes’ and that of ‘overstability in the present 
configuration, we can state the above theorem as follow:- 
Theorem 3: The necessary condition for the existence of instability in ‘oscillatory modes’ and that of 
‘overstability’ in a Rivlin-Ericksen viscoelastic fluid heated from below, in the presence of uniform 
vertical rotation, is that the Taylor number AT   and the viscoelasticity parameter F must satisfy the 

inequality 1
)1(

4

2




 FTA , for horizontal rigid boundaries of infinite extension at the top and bottom of 

the fluid. 
 
CONCLUSIONS 
This theorem mathematically established that the onset of instability in a Rivlin-Ericksen viscoelastic 
fluid in the presence of uniform vertical rotation cannot manifest itself as oscillatory motions of growing 
amplitude if the Taylor number AT   and the viscoelasticity parameter F, satisfy the 

inequality 1
)1(

4

2




 FTA , for horizontal rigid boundaries of infinite extension at the top and bottom of 

the fluid. 
The essential content of the theorem, from the point of view of linear stability theory is that for the 
configuration of Rivlin-Ericksen viscoelastic fluid of infinite horizontal extension heated form below, 
having rigid boundaries at the top and bottom of the fluid, in the presence of uniform vertical rotation 
parallel to the force field of gravity, an arbitrary neutral or unstable modes of the system are definitely 

non-oscillatory in character if 1
)1(

4

2




 FTA , and in particular PES is valid. 
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