Research Article

AN ALTERNATE PROOF OF THE DE MOIVRE'S THEOREM

K.V. Vidyasagar
Department of Mathematics, Government Degree College, Narsipatnam-531116, Visakhapatnam
*Author for Correspondence

Abstract

Transformation is a method for solving the system, where we face difficult. As the well known transformations like Fourier transformation, Laplace transformation, Z-trans formations helps us to solve different equations like differential algebraic problems. In this paper I propose a new transformation called C-transformation, from the set of complex numbers onto the set of all 2×2 matrices of the form $\left(\begin{array}{ll}a & i b \\ i b & a\end{array}\right)$ where a, b are real numbers. I defined a new set M , which is nothing but the set of all 2×2 matrices of the form $\left(\begin{array}{cc}a & i b \\ i b & a\end{array}\right)$ where a, b are real numbers. The C-transformation is a transformation from the set of complex numbers onto M. I further show that the C-transformation is isomorphism from C onto M . The existence and uniqueness of such transformation is proved. By using this transformation, I try to give the geometrical interpretation for the matrix of the form $\left(\begin{array}{cc}a & i b \\ i b & a\end{array}\right)$ which is nothing but a point in the argand plane. I gave an alternate proof for the well known Demovier's theorem. I further try to solve a conformal mapping from z-plane to w-plane using this C-transformation provided the angle preserving, ie $\theta=\phi$ (the angle between the curves in z-plane is equal to the angle between the curves in w-plane) with an example $\mathrm{w}=\mathrm{f}(\mathrm{z})=z^{2}$ at the point $\mathrm{z}=1+\mathrm{i}$.

INTRODUCTION

It is known that the set of real number system " R " is a ring with respect to general addition, general multiplication i.e., ($\mathrm{R},+$, .) is a ring. In this ring ($\mathrm{R},+$, .) " 1 " is the identity element and " -1 " is the additive inverse of " 1 ".
Now define a new set M , which is nothing but, the set of all 2×2 matrices of the form $\left(\begin{array}{cc}a & i b \\ i b & a\end{array}\right)$ where a, b are real numbers. Hence the set M is a ring with respect to matrix addition, matrix multiplication. In this ring " I " (unit matrix) is $\mathrm{I}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ the identity element and " I ", $-I=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$ is the additive inverse of " I ", $\mathrm{I}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ (unit matrix). When we define a complex number Z , we define $\mathrm{Z}=$ ($\mathrm{a}+\mathrm{ib}$), where a, b are real numbers. And $i^{2}=-1$, (additive inverse of 1). I suppose that there may be unique matrix J in the set M such that $J^{2}=-\mathrm{I} \quad, \quad I=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$ additive inverse of $\mathrm{I}, \mathrm{I}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ When we suppose $J^{2}=-\mathrm{I}$, we should get $\mathrm{J}=\left(\begin{array}{ll}0 & i \\ i & 0\end{array}\right)$, since $J^{2}=\left(\begin{array}{cc}0 & i \\ i & 0\end{array}\right)\left(\begin{array}{ll}0 & i \\ i & 0\end{array}\right)=-\mathrm{I}$
\{Of course, we may get 4 matrix in the form, satisfying the condition $J^{2}=-\mathrm{I}$

Research Article

1) When $\mathrm{J}=\left(\begin{array}{ll}i & 0 \\ 0 & i\end{array}\right), \quad J^{2}=\left(\begin{array}{cc}i & 0 \\ 0 & i\end{array}\right)\left(\begin{array}{cc}i & 0 \\ 0 & i\end{array}\right)=-\mathrm{I}$
2) When $J=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right), J^{2}=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)=-I$
3) When $\mathrm{J}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right) ; J^{2}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)=-\mathrm{I}$
4) When $\left.\mathrm{J}=\left(\begin{array}{ll}0 & i \\ i & 0\end{array}\right), J^{2}=\left(\begin{array}{cc}0 & i \\ i & 0\end{array}\right)\left(\begin{array}{cc}0 & i \\ i & 0\end{array}\right)=-\mathrm{I} \quad\right\}$ among the four the forth matrix is only the matrix in M
Every complex number $\mathrm{z}=\mathrm{a}+\mathrm{ib}$ can be represented as a matrix $\mathrm{m}=\mathrm{aI}+\mathrm{bJ}, \mathrm{a}, \mathrm{b}$ are real numbers I identity matrix and $\mathrm{J}=\left(\begin{array}{cc}0 & i \\ i & 0\end{array}\right)$
Proposition: There is a isomorphism from The set of complex number C into the set M of all 2×2 matrices of the form $\left(\begin{array}{cc}a & i b \\ i b & a\end{array}\right)$ where a, b are real numbers.

Proof

Suppose that f is a transformation from The set of complex number C into the set M of all 2×2 matrices of the form $\left(\begin{array}{cc}a & i b \\ i b & a\end{array}\right)$ where a, b are real numbers and Defined as $\mathrm{f}(\mathrm{Z})=\left(\begin{array}{cc}\frac{z+\bar{z}}{2} & \frac{z-\bar{z}}{2} \\ \frac{z-\bar{z}}{2} & \frac{z+\bar{z}}{2}\end{array}\right)$ for Z
$€ \mathrm{C}$,
When $\mathrm{z}=\mathrm{a}+\mathrm{ib} \quad, \frac{z+\bar{z}}{2}=\mathrm{a} ; \quad \frac{z-\bar{z}}{2}=\mathrm{bi}$
then $\mathrm{f}(\mathrm{Z})=\mathrm{f}(\mathrm{a}+\mathrm{ib})=\left(\begin{array}{cc}a & i b \\ i b & a\end{array}\right)$
As per the definition of the set $\mathrm{M}, M=\left\{M_{r} / M_{r}\right.$ is the matrix in the form $\left.\left(\begin{array}{cc}a & i b \\ i b & a\end{array}\right)\right\}$

Proof Part I:-

Result
We know that the set of all complex number system C is a field with respect to general addition and multiplication.

Claim 1)

The set M is a ring with respect to matrix addition and matrix multiplication
For proving this, we already Know that M is a abelian group with respect to matrix addition and M is a group with respect to matrix addition i.e. $(M,+)$ is an abelian group ($\mathrm{M},$. .) is group And since $\left(\begin{array}{cc}a_{1} & i b_{1} \\ i b_{1} & a_{1}\end{array}\right)\left(\begin{array}{cc}a_{2} & i b_{2} \\ i b_{2} & a_{2}\end{array}\right)=\left(\begin{array}{cc}a_{2} & i b_{2} \\ i b_{2} & a_{2}\end{array}\right)\left(\begin{array}{cc}a_{1} & i b_{1} \\ i b_{1} & a_{1}\end{array}\right)$ (verified)
Hence (M,.) is an abelian group.

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online)
An Online International Journal Available at http://www.cibtech.org/jpms.htm
2012 Vol. 2 (2) April- June, pp.21-27/ Vidyasagar

Research Article

Therefore 1) $(M,+)$ is an abelian group
2)(M,.) is a semi group
3)Distributive properties holds good

Therefore ($\mathrm{M},+,$.) is ring under matrix addition and matrix multiplication.
Claim 2) The set M is a commutative ring with unit element, here unit element is the unit matrix I.
Claim3) The ring ($M,+,$.$) is a skew field.$
Claim4) The ring ($M,+$..) is a field since, every non zero element is invertable under matrix multiplication.
Claim 5) The ring (M,+,.) is withoutzero divisors, Hence ($M,+$,. $)$ is Integral domain.

Proof PART II

Claim
The defined function $\mathrm{f}: C \rightarrow M$ such that $\mathrm{f}(\mathrm{Z})=\left(\begin{array}{cc}\frac{z+\bar{z}}{2} & \frac{z-\bar{z}}{2} \\ \frac{z-\bar{z}}{2} & \frac{z+\bar{z}}{2}\end{array}\right)$ for
$\mathrm{z} € \mathrm{C}$ is an isomorphism
Proof 1) f is one- one and onto and well defined
Proof2) $f\left(z_{1}+z_{2}\right)=f\left(z_{1}\right)+f\left(z_{2}\right)$
Proof 3) $f\left(z_{1} z_{2}\right)=f\left(z_{1}\right) f\left(z_{2}\right)$

Note
when $z_{1}=z_{2}$, hence $f\left(z_{1} z_{2}\right)=f\left(z_{1}\right) f\left(z_{1}\right)=\left(f\left(z_{1}\right)\right)^{2}$
Similarly, $f\left(z_{1} z_{2} z_{3} z_{4} \ldots \ldots \ldots . z_{n}\right)=f\left(z_{1}\right) f\left(z_{2}\right) \ldots \ldots \ldots . f\left(z_{n}\right)$
If $z_{1}=z_{2}=\ldots \ldots \ldots \ldots=z_{n}$
Hence $f\left(z_{1} z_{1} z_{1} z_{1} \ldots \ldots \ldots z_{1}\right)=f\left(z_{1}\right) f\left(z_{1}\right) \ldots \ldots \ldots \ldots f\left(z_{1}\right)=\left(f\left(z_{1}\right)\right)^{n}$

Definition

"C-TRANSFORMATION"

If $\mathrm{Z}=\mathrm{a}+\mathrm{ib}$ then the $\mathrm{c}-$ transformation for $\mathrm{Z}=\mathrm{a}+\mathrm{ib}$ is $\left(\begin{array}{cc}\frac{z+\bar{z}}{2} & \frac{z-\bar{z}}{2} \\ \frac{z-\bar{z}}{2} & \frac{z+\bar{z}}{2}\end{array}\right)=\left(\begin{array}{cc}a & i b \\ i b & a\end{array}\right)$
That is $\mathrm{C}-\mathrm{T}(\mathrm{z})=\mathrm{C}-\mathrm{T}(\mathrm{a}+\mathrm{ib})=\left(\begin{array}{cc}a & i b \\ i b & a\end{array}\right)$
And the inverse transformation for $\left(\begin{array}{cc}\frac{z+\bar{z}}{2} & \frac{z-\bar{z}}{2} \\ \frac{z-\bar{z}}{2} & \frac{z+\bar{z}}{2}\end{array}\right)=\left(\begin{array}{cc}a & i b \\ i b & a\end{array}\right)$ is $\quad \mathrm{a}+\mathrm{ib}=\mathrm{z}$

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online)
An Online International Journal Available at http://www.cibtech.org/jpms.htm
2012 Vol. 2 (2) April- June, pp.21-27/ Vidyasagar

Research Article

That is $C-T^{-1}\left(\left(\begin{array}{cc}\frac{z+\bar{z}}{2} & \frac{z-\bar{z}}{2} \\ \frac{z-\bar{z}}{2} & \frac{z+\bar{z}}{2}\end{array}\right)\right)=C-T^{-1}\left(\left(\begin{array}{cc}a & i b \\ i b & a\end{array}\right)\right)=\mathrm{a}+\mathrm{ib}=\mathrm{z}$

Transformation on Addition of complex Numbers

Let $z_{1}=a_{1}+\mathrm{i} b_{1}$ and $z_{2}=a_{2}+\mathrm{i} b_{2}$ and $z_{1}+z_{2}$ is also a complex number then
C-transformation on $z_{1}+z_{2}$ is
$\mathrm{C}-\mathrm{T}\left(z_{1}+z_{2}\right)=\mathrm{C}-\mathrm{T}\left\{\left(a_{1}+\mathrm{i} b_{1}\right)+\left(a_{2}+\mathrm{i} b_{2}\right)\right\}$
$=\mathrm{C}-\mathrm{T}\left\{\left(a_{1}+a_{2}\right)+\mathrm{i}\left(b_{1}+b_{2}\right)\right\}=\left(\begin{array}{cc}a_{1}+a_{2} & \left(b_{1}+b_{2}\right) i \\ \left(b_{1}+b_{2}\right) i & a_{1}+a_{2}\end{array}\right)$
$=\left(\begin{array}{ll}a_{1} & b_{1} i \\ b_{1} i & a_{1}\end{array}\right)+\left(\begin{array}{ll}a_{2} & b_{2} i \\ b_{2} i & a_{2}\end{array}\right)$
And the Inverse C-transformation

$$
\begin{aligned}
C-T^{-1}\left(\left(\begin{array}{cc}
a_{1} & b_{1} i \\
b_{1} i & a_{1}
\end{array}\right)+\left(\begin{array}{cc}
a_{2} & b_{2} i \\
b_{2} i & a_{2}
\end{array}\right)\right. & =C-T^{-1}\left(\left(\begin{array}{cc}
a_{1} & b_{1} i \\
b_{1} i & a_{1}
\end{array}\right)\right)+C-T^{-1}\left(\left(\begin{array}{ll}
a_{2} & b_{2} i \\
b_{2} i & a_{2}
\end{array}\right)\right) \\
& =\left(a_{1}+\mathrm{i} b_{1}\right)+\left(a_{2}+\mathrm{i} b_{2}\right) \\
& =z_{1}+z_{2}
\end{aligned}
$$

Let $z_{1}=a_{1}+\mathrm{i} b_{1}$ and $z_{2}=a_{2}+\mathrm{i} b_{2}$ then the C -Transformation on $z_{1} z_{2}=\left(a_{1}+\mathrm{i} b_{1}\right)\left(a_{2}+\mathrm{i} b_{2}\right)$ is $\mathrm{C}-\mathrm{T}\left(z_{1} z_{2}\right)=\mathrm{C}-\mathrm{T}\left(z_{1}\right) \cdot \mathrm{C}-\mathrm{T}\left(z_{2}\right)$

$$
\begin{gathered}
=\left(\begin{array}{cc}
a_{1} & b_{1} i \\
b_{1} i & a_{1}
\end{array}\right)\left(\begin{array}{cc}
a_{2} & b_{2} i \\
b_{2} i & a_{2}
\end{array}\right) \\
=\left(\begin{array}{cc}
a_{1} a_{2}-b_{1} b_{2} & i\left(a_{1} b_{2}+b_{1} a_{2}\right) \\
i\left(a_{1} b_{2}+b_{1} a_{2}\right) & a_{1} a_{2}-b_{1} b_{2}
\end{array}\right)
\end{gathered}
$$

And the inverse C-Tranformation for

$$
\begin{aligned}
&\left(\begin{array}{cc}
a_{1} a_{2}-b_{1} b_{2} & i\left(a_{1} b_{2}+b_{1} a_{2}\right) \\
i\left(a_{1} b_{2}+b_{1} a_{2}\right) & a_{1} a_{2}-b_{1} b_{2}
\end{array}\right)=C-T^{-1}\left(\left(\begin{array}{cc}
a_{1} a_{2}-b_{1} b_{2} & i\left(a_{1} b_{2}+b_{1} a_{2}\right) \\
i\left(a_{1} b_{2}+b_{1} a_{2}\right) & a_{1} a_{2}-b_{1} b_{2}
\end{array}\right)\right) \\
&=\left(a_{1} a_{2}-b_{1} b_{2}\right)+\mathrm{i}\left(a_{1} b_{2}+b_{1} a_{2}\right)
\end{aligned}
$$

By the above definition of addition and multiplication of complex numbers, we can easily verify all others axioms.

Research Article

Multiplicative Inverse of a non-zero complex number
Let $\mathrm{Z}=\mathrm{a}+\mathrm{ib}$ be a non zero complex number,
then C-Transformation for Z is $=\mathrm{C}-\mathrm{T}(\mathrm{Z})=\left(\begin{array}{ll}a & b i \\ b i & a\end{array}\right)$
Since the multiplication inverse of Z is Z^{-1}
And hence the C-transformation for $Z^{-1}=C-T\left(Z^{-1}\right)=C-T(Z)^{-1}$

$$
\begin{aligned}
\therefore \quad\left(\begin{array}{cc}
a & b i \\
b i & a
\end{array}\right)^{-1} & =\frac{\left(\begin{array}{cc}
a & -b i \\
b i & a
\end{array}\right)}{\left|\begin{array}{cc}
a & -b i \\
b i & a
\end{array}\right|} \\
& =\frac{\left(\begin{array}{cc}
a & -b i \\
b i & a
\end{array}\right)}{\left(a^{2}+b^{2}\right)}
\end{aligned}
$$

And hence the C-transformation for $Z^{-1}=\frac{\left(\begin{array}{cc}a & -b i \\ b i & a\end{array}\right)}{\left(a^{2}+b^{2}\right)}$
And the inverse C-Transformation for $\frac{\left(\begin{array}{cc}a & -b i \\ b i & a\end{array}\right)}{\left(a^{2}+b^{2}\right)}=\frac{a-i b}{\left(a^{2}+b^{2}\right)}$

$$
=\frac{a}{\left(a^{2}+b^{2}\right)}-i \frac{b}{\left(a^{2}+b^{2}\right)}
$$

Hence the Inverse of $\mathrm{a}+\mathrm{ib}=\frac{a-i b}{\left(a^{2}+b^{2}\right)}$.

Note: by the above definition of addition and multiplication of complex number
If $\mathrm{Z}=\cos \theta+\mathrm{i} \sin \theta$ then $\mathrm{C}-\mathrm{T}(\mathrm{Z})=\left(\begin{array}{cc}\cos \theta & i \sin \theta \\ i \sin \theta & \cos \theta\end{array}\right)=A_{\theta}$ (say) and
the inverse transformation $C-T^{-1}\left(\left(\begin{array}{cc}\cos \theta & i \sin \theta \\ i \sin \theta & \cos \theta\end{array}\right)\right)=C-T^{-1}\left(A_{\theta}\right)=\cos \theta+\mathrm{i} \sin \theta=\mathrm{Z}$
Now we shall prove The De-Movier's theorem by applying C-transformation De-Moiver's Theorem (Special Proof):
Statement: Let ' n ' be a positive integer .Then $\quad(\cos \theta+i \sin \theta)^{n}=(\cos n \theta+i \sin n \theta)$

Research Article

We know that $A_{\theta}{ }^{n}=\left(\begin{array}{cc}\cos n \theta & i \sin n \theta \\ i \sin n \theta & \cos n \theta\end{array}\right)$ for $\mathrm{n} \in \mathrm{N}$ and the proof as follows
For $\mathrm{n}=1, A_{\theta}{ }^{n}=\left(\begin{array}{ll}\cos n \theta & i \sin n \theta \\ i \sin n \theta & \cos n \theta\end{array}\right)$
Let it be true for $\mathrm{n}=\mathrm{m}$, so that $\left(A_{\theta}\right)^{m}=\left(\begin{array}{cc}\cos m \theta & \sin m \theta \\ -\sin m \theta & \cos m \theta\end{array}\right)$
$\left(A_{\theta}\right)^{m+1}=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)\left(\begin{array}{cc}\cos m \theta & \sin m \theta \\ -\sin m \theta & \cos m \theta\end{array}\right)$
$=\left(\begin{array}{cc}\cos \theta \cos m \theta-\sin \theta \sin m \theta & \cos \theta \sin m \theta+\sin \theta \cos m \theta \\ -\sin \theta \cos m \theta-\cos \theta \sin m \theta & \cos \theta \cos m \theta-\sin \theta \sin m \theta\end{array}\right)$
$=\left(\begin{array}{cc}\cos (m+1) \theta & \sin (m+1) \theta \\ -\sin (m+1) \theta & \cos (m+1) \theta\end{array}\right)$
Thus the result is true for $\mathrm{n}=\mathrm{m}$ then it is also true for $\mathrm{n}=(\mathrm{m}+1)$.Hence, by the principle of mathematical induction ,it is true for all natural numbers .

$$
\therefore \quad A_{\theta}{ }^{n}=\left(\begin{array}{cc}
\cos n \theta & \sin n \theta \\
-\sin n \theta & \cos n \theta
\end{array}\right)
$$

And hence Inverse C -Transformation $=C-T^{-1}\left(A_{\theta}{ }^{n}\right)$

$$
\begin{aligned}
&= C-T^{-1}\left(\left(\begin{array}{cc}
\cos n \theta & \sin n \theta \\
-\sin n \theta & \cos n \theta
\end{array}\right)\right) \\
&=(\cos n \theta+i \sin n \theta)
\end{aligned}
$$

And hence $(\cos \theta+i \sin \theta)^{n}=(\cos n \theta+i \sin n \theta)$ for $\mathrm{n} \in \mathrm{N}$.
Cor: If n is a negative integer, then $(\cos \theta+i \sin \theta)^{n}=(\cos n \theta+i \sin n \theta)$
Proof: Let $\mathrm{n}=-\mathrm{p}$, where p is a positive integer, then $(\cos \theta+i \sin \theta)^{n}=(\cos \theta+i \sin \theta)^{-p}$

$$
\begin{aligned}
& =\frac{1}{(\cos \theta+i \sin \theta)^{p}} \\
& =\frac{1}{(\cos p \theta+i \sin p \theta)}
\end{aligned}
$$

$=\frac{1}{(\cos p \theta+i \sin p \theta)} \frac{(\cos p \theta-i \sin p \theta)}{(\cos p \theta-i \sin p \theta)}=(\cos p \theta-i \sin p \theta)$
$=(\cos (-p) \theta+i \sin (-p) \theta)=(\cos n \theta+i \sin n \theta)$
Hence the proof.
Note (1): $(\cos \theta+i \sin \theta)^{-n}=(\cos n \theta-i \sin n \theta)$.

Research Article

Note (2): $(\cos \theta+i \sin \theta)^{n}=(\cos n \theta+i \sin n \theta)$.
Note (3): $(\cos \theta-i \sin \theta)^{-n}=(\cos n \theta+i \sin n \theta)$.
Scope: Matrix operation is quite easy to all for solving; I hope this transformation may help for solving the equations involving complex variables. I want to develop this transformation and I wish to apply this in the conformal mappings.

REFERENCES

James ward brown, Ruel V Churchill (2004). Complex variable and applications/.-7 $7^{\text {th }}$ ed.p.cm-(BrownChurchill series) Internatioanal Series in Pure and Applied Mathematics.
Churchill, Ruel Vance (1899). Functions of complex variable I. -II. Title. III. series. IV, series: International series in pure and applied mathematics.
John B. Convay Functions of one complex variable $-2^{\text {nd }}$ edition, (Springer international student edition), (narosa publications) 81 85015-37-6.
Walter rudin Real and Complex analysis $-3^{\text {rd }}$ edition (Pushp print series, New Delhi) (Tata-MCGraw Hill Publishing company Ltd).
H Elton. Lacey The Isometric theory of Classical Banach Spaces-primary edition Springer verlag New York, Heidelberg Berlin.
Giovanni sansone-Johan gerretsen (1969). Lectures on the Theory of functions of S Complex Variable (Wolters -Noordhoff publishing Groningen 1969 the Netherlands).
WK Hayman. Multivalent Functions (Cambridge AT the University Press 1958)
Dr B S Grewal. Higher engineering mathematics2005) $-39^{\text {th }}$ edition (Hindustan offset press) (Khanna Publications) 81-7409-195-5
AR vasista, Dr R K Gupta (2009). Integral Transforms - $28^{\text {th }}$ edition (Krishna prakhasam media (P) Ltd .meerut) Book code 224-28
Kenneth Hoffman Ray Kunze (2002). Linear algebra -2 ${ }^{\text {nd }}$ edition (Printed hall India) 81 203-0270-2

