AN ALTERNATE PROOF OF THE DE MOIVRE'S THEOREM

K.V. Vidyasagar

Department of Mathematics, Government Degree College, Narsipatnam-531116, Visakhapatnam *Author for Correspondence

ABSTRACT

Transformation is a method for solving the system, where we face difficult. As the well known transformations like Fourier transformation, Laplace transformation, Z-trans formations helps us to solve different equations like differential algebraic problems. In this paper I propose a new transformation called *C-transformation*, from the set of complex numbers onto the set of all 2×2 matrices of the form

 $\begin{pmatrix} a & ib \\ ib & a \end{pmatrix}$ where a, b are real numbers. I defined a new set M, which is nothing but the set of all 2×2

matrices of the form $\begin{pmatrix} a & ib \\ ib & a \end{pmatrix}$ where a, b are real numbers. The *C*-transformation is a transformation

from the set of complex numbers onto M. I further show that the *C-transformation* is isomorphism from C onto M. The existence and uniqueness of such transformation is proved. By using this

transformation, I try to give the geometrical interpretation for the matrix of the form $\begin{pmatrix} a & ib \\ ib & a \end{pmatrix}$ which

is nothing but a point in the argand plane. I gave an alternate proof for the well known Demovier's theorem. I further try to solve a conformal mapping from z-plane to w-plane using this *C-transformation* provided the angle preserving, ie $\theta = \phi$ (the angle between the curves in z-plane is equal to the angle between the curves in z-plane is equal to the angle

between the curves in w-plane) with an example w=f(z)= z^2 at the point z=1+i.

INTRODUCTION

It is known that the set of real number system "R" is a ring with respect to general addition, general multiplication *i.e.*, (R,+,.) is a ring. In this ring (R,+,.) "1" is the identity element and "-1" is the additive inverse of "1".

Now define a new set M, which is nothing but, the set of all 2×2 matrices of the form $\begin{pmatrix} a & ib \\ ib & a \end{pmatrix}$ where a, b are real numbers. Hence the set M is a ring with respect to matrix addition, matrix multiplication. In this ring "I" (unit matrix) is $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ the identity element and "-I", $-I = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ is the additive inverse of "I", $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ (unit matrix). When we define a complex number Z, we define Z=

(a+ib), where a, b are real numbers. And $i^2 = -1$, (additive inverse of 1). I suppose that there may be

unique matrix J in the set M such that $J^2 = -I$, $-I = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ additive inverse of I, $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

When we suppose $J^2 = -I$, we should get $J = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$, since $J^2 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} = -I$

{Of course, we may get 4 matrix in the form, satisfying the condition $J^2 = -I$

Research Article

1) When
$$J = \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix}$$
, $J^2 = \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix} \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix} = -I$
2) When $J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, $J^2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = -I$
3) When $J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$; $J^2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = -I$
4) When $J = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$, $J^2 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} = -I$ } among the four the forth matrix is only the matrix in M

Every complex number z=a+ib can be represented as a matrix m= aI+bJ ,a,b are real numbers I identity matrix and $J = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$

Proposition: There is a isomorphism from The set of complex number C into the set M of all 2×2 matrices of the form $\begin{pmatrix} a & ib \\ ib & a \end{pmatrix}$ where a, b are real numbers.

Proof

Suppose that f is a transformation from The set of complex number C into the set M of all 2×2

matrices of the form
$$\begin{pmatrix} a & ib \\ ib & a \end{pmatrix}$$
 where a, b are real numbers and Defined as $f(Z) = \begin{pmatrix} \frac{z+z}{2} & \frac{z-z}{2} \\ \frac{z-z}{2} & \frac{z+z}{2} \\ \frac{z-z}{2} & \frac{z+z}{2} \end{pmatrix}$ for z

€С,

When z=a+ib ,
$$\frac{z+\overline{z}}{2}$$
=a; $\frac{z-\overline{z}}{2}$ =bi
then f(Z)= f (a+ib)= $\begin{pmatrix} a & ib \\ ib & a \end{pmatrix}$

As per the definition of the set M, $M = \{M_r / M_r \text{ is the matrix in the form } \begin{pmatrix} a & ib \\ ib & a \end{pmatrix} \}$

Proof Part I:-

Result

We know that the set of all complex number system C is a field with respect to general addition and multiplication.

Claim 1)

The set M is a ring with respect to matrix addition and matrix multiplication

For proving this, we already Know that M is a abelian group with respect to matrix addition and M is a group with respect to matrix addition i.e. (M, +) is an abelian group (M, .) is group And since

$$\begin{pmatrix} a_1 & ib_1 \\ ib_1 & a_1 \end{pmatrix} \begin{pmatrix} a_2 & ib_2 \\ ib_2 & a_2 \end{pmatrix} = \begin{pmatrix} a_2 & ib_2 \\ ib_2 & a_2 \end{pmatrix} \begin{pmatrix} a_1 & ib_1 \\ ib_1 & a_1 \end{pmatrix}$$
(verified)

Hence (*M*,.) is an abelian group.

Research Article

Therefore 1) (M, +) is an abelian group 2)(M, .) is a semi group

3)Distributive properties holds good

Therefore (M,+,.) is ring under matrix addition and matrix multiplication.

Claim 2) The set M is a commutative ring with unit element, here unit element is the unit matrix I. Claim3) The ring (M, +, .) is a skew field.

Claim4) The ring (M,+,.) is a field since , every non zero element is invertable under matrix multiplication.

Claim 5) The ring (M, +, .) is without zero divisors, Hence (M, +, .) is Integral domain.

Proof PART II Claim

The defined function f:
$$C \to M$$
 such that $f(Z) = \begin{pmatrix} \overline{z+z} & \overline{z-z} \\ 2 & 2 \\ \hline z & -z \\ \hline 2 & 2 \\ \hline 2 &$

 $z \in C$ is an isomorphism

Proof 1) f is one- one and onto and well defined Proof 2) $f(z_1 + z_2) = f(z_1) + f(z_2)$ Proof 3) $f(z_1z_2) = f(z_1)f(z_2)$

Note

when $z_1 = z_2$, hence $f(z_1 z_2) = f(z_1) f(z_1) = (f(z_1))^2$ Similarly, $f(z_1 z_2 z_3 z_4 \dots z_n) = f(z_1) f(z_2) \dots f(z_n)$ If $z_1 = z_2 = \dots = z_n$ Hence $f(z_1 z_1 z_1 z_1 \dots z_1) = f(z_1) f(z_1) \dots f(z_1) = (f(z_1))^n$

Definition

"C-TRANSFORMATION"

If Z=a+ib then the c –transformation for Z=a+ib is
$$\begin{pmatrix} \overline{z+z} & \overline{z-z} \\ 2 & \overline{z} \\ \overline{z-z} & \overline{z+z} \\ 2 & \overline{z} \end{pmatrix} = \begin{pmatrix} a & ib \\ ib & a \end{pmatrix}$$

That is C-T(z)=C-T(a+ib)= $\begin{pmatrix} a & ib \\ ib & a \end{pmatrix}$

And the inverse transformation for
$$\begin{pmatrix} \overline{z+z} & \overline{z-z} \\ 2 & 2 \\ \hline z-z & \overline{z+z} \\ 2 & 2 \end{pmatrix} = \begin{pmatrix} a & ib \\ ib & a \end{pmatrix}$$
 is $a+ib = z$

That is
$$C - T^{-1}\left(\begin{array}{ccc} \frac{z+\overline{z}}{2} & \frac{z-\overline{z}}{2} \\ \frac{z-\overline{z}}{2} & \frac{z+\overline{z}}{2} \end{array} \right) = C - T^{-1}\left(\begin{array}{ccc} a & ib \\ ib & a \end{array} \right) = a + ib = z$$

Transformation on Addition of complex Numbers

Let $z_1 = a_1 + ib_1$ and $z_2 = a_2 + ib_2$ and $z_1 + z_2$ is also a complex number then C-transformation on $z_1 + z_2$ is

C-T(
$$z_1 + z_2$$
)=C-T {($a_1 + ib_1$)+($a_2 + ib_2$)}
=C-T{($a_1 + a_2$)+i($b_1 + b_2$)}= $\begin{pmatrix} a_1 + a_2 & (b_1 + b_2)i \\ (b_1 + b_2)i & a_1 + a_2 \end{pmatrix}$
= $\begin{pmatrix} a_1 & b_1i \\ b_1i & a_1 \end{pmatrix}$ + $\begin{pmatrix} a_2 & b_2i \\ b_2i & a_2 \end{pmatrix}$

And the Inverse C-transformation

$$C - T^{-1} \begin{pmatrix} a_1 & b_1 i \\ b_1 i & a_1 \end{pmatrix} + \begin{pmatrix} a_2 & b_2 i \\ b_2 i & a_2 \end{pmatrix} = C - T^{-1} \begin{pmatrix} a_1 & b_1 i \\ b_1 i & a_1 \end{pmatrix} + C - T^{-1} \begin{pmatrix} a_2 & b_2 i \\ b_2 i & a_2 \end{pmatrix}$$

= $(a_1 + i b_1) + (a_2 + i b_2)$
= $z_1 + z_2$

Let $z_1 = a_1 + ib_1$ and $z_2 = a_2 + ib_2$ then the C-Transformation on $z_1 z_2 = (a_1 + ib_1)(a_2 + ib_2)$ is C-T $(z_1 z_2)$ =C-T (z_1) .C-T (z_2)

$$= \begin{pmatrix} a_1 & b_1 i \\ b_1 i & a_1 \end{pmatrix} \begin{pmatrix} a_2 & b_2 i \\ b_2 i & a_2 \end{pmatrix}$$

$$= \begin{pmatrix} a_1 a_2 - b_1 b_2 & i(a_1 b_2 + b_1 a_2) \\ i(a_1 b_2 + b_1 a_2) & a_1 a_2 - b_1 b_2 \end{pmatrix}$$

And the inverse C-Tranformation for

$$\begin{pmatrix} a_1a_2 - b_1b_2 & i(a_1b_2 + b_1a_2) \\ i(a_1b_2 + b_1a_2) & a_1a_2 - b_1b_2 \end{pmatrix} = C - T^{-1} \begin{pmatrix} a_1a_2 - b_1b_2 & i(a_1b_2 + b_1a_2) \\ i(a_1b_2 + b_1a_2) & a_1a_2 - b_1b_2 \end{pmatrix} = (a_1a_2 - b_1b_2) + i(a_1b_2 + b_1a_2).$$

By the above definition of addition and multiplication of complex numbers, we can easily verify all others axioms.

Research Article

Multiplicative Inverse of a non-zero complex number Let Z=a+ib be a non zero complex number,

then C-Transformation for Z is= C-T(Z) = $\begin{pmatrix} a & bi \\ bi & a \end{pmatrix}$

Since the multiplication inverse of Z is Z^{-1}

And hence the C-transformation for $Z^{-1} = C - T(Z^{-1}) = C - T(Z)^{-1}$

$$\therefore \qquad \qquad = \left(\begin{matrix} a & bi \\ bi & a \end{matrix}\right)^{-1} = \frac{\left(\begin{matrix} a & -bi \\ bi & a \end{matrix}\right)^{-1}}{\begin{vmatrix} a & -bi \\ bi & a \end{vmatrix}}$$
$$= \frac{\left(\begin{matrix} a & -bi \\ bi & a \end{matrix}\right)}{(a^2 + b^2)}$$
And hence the C-transformation for $Z^{-1} = \frac{\left(\begin{matrix} a & -bi \\ bi & a \end{matrix}\right)}{(a^2 + b^2)}$
$$= \frac{a - ib}{(a^2 + b^2)}$$
And the inverse C-Transformation for $\frac{\left(\begin{matrix} a & -bi \\ bi & a \end{matrix}\right)}{(a^2 + b^2)} = \frac{a - ib}{(a^2 + b^2)}$
$$= \frac{a}{(a^2 + b^2)} - i\frac{b}{(a^2 + b^2)}$$
Hence the Inverse of a+ib = $\frac{a - ib}{(a^2 + b^2)}$.

Note: by the above definition of addition and multiplication of complex number

If
$$Z = \cos\theta + i\sin\theta$$
 then $C - T(Z) = \begin{pmatrix} \cos\theta & i\sin\theta\\ i\sin\theta & \cos\theta \end{pmatrix} = A_{\theta}$ (say) and
the inverse transformation $C - T^{-1} \begin{pmatrix} \cos\theta & i\sin\theta\\ i\sin\theta & \cos\theta \end{pmatrix} = C - T^{-1} (A_{\theta}) = \cos\theta + i\sin\theta = Z$

Now we shall prove The De-Movier's theorem by applying C-transformation De-Moiver's Theorem (Special Proof):

Statement: Let 'n' be a positive integer .Then
$$(\cos \theta + i \sin \theta)^n = (\cos n\theta + i \sin n\theta)$$

Proof: Since C-T(
$$\cos\theta$$
 +i $\sin\theta$) = C-T(Z) = $\begin{pmatrix} \cos\theta & i\sin\theta\\ i\sin\theta & \cos\theta \end{pmatrix} = A_{\theta}$ (say)

Research Article

We know that $A_{\theta}^{n} = \begin{pmatrix} \cos n\theta & i \sin n\theta \\ i \sin n\theta & \cos n\theta \end{pmatrix}$ for $n \in \mathbb{N}$ and the proof as follows For n=1, $A_{\theta}^{n} = \begin{pmatrix} \cos n\theta & i \sin n\theta \\ i \sin n\theta & \cos n\theta \end{pmatrix}$ Let it be true for n=m, so that $(A_{\theta})^m = \begin{pmatrix} \cos m\theta & \sin m\theta \\ -\sin m\theta & \cos m\theta \end{pmatrix}$ $(A_{\theta})^{m+1} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos m\theta & \sin m\theta \\ -\sin m\theta & \cos m\theta \end{pmatrix}$ $= \begin{pmatrix} \cos\theta\cos m\theta - \sin\theta\sin m\theta & \cos\theta\sin m\theta + \sin\theta\cos m\theta \\ -\sin\theta\cos m\theta - \cos\theta\sin m\theta & \cos\theta\cos m\theta - \sin\theta\sin m\theta \end{pmatrix}$

 $= \begin{pmatrix} \cos(m+1)\theta & \sin(m+1)\theta \\ -\sin(m+1)\theta & \cos(m+1)\theta \end{pmatrix}$

Thus the result is true for n=m then it is also true for n=(m+1). Hence, by the principle of mathematical induction, it is true for all natural numbers.

$$\therefore \quad A_{\theta}^{n} = \begin{pmatrix} \cos n\theta & \sin n\theta \\ -\sin n\theta & \cos n\theta \end{pmatrix}$$

And hence Inverse C-Transformation= $C - T^{-1}(A_{\theta}^{n})$

$$=C-T^{-1}\left(\begin{pmatrix}\cos n\theta & \sin n\theta\\ -\sin n\theta & \cos n\theta\end{pmatrix}\right)$$

 $=(\cos n\theta + i\sin n\theta)$

And hence $(\cos \theta + i \sin \theta)^n = (\cos n\theta + i \sin n\theta)$ for $n \in \mathbb{N}$.

Cor: If n is a negative integer, then $(\cos\theta + i\sin\theta)^n = (\cos n\theta + i\sin n\theta)$

Proof: Let n=-p, where p is a positive integer, then $(\cos \theta + i \sin \theta)^n = (\cos \theta + i \sin \theta)^{-p}$

$$= \frac{1}{(\cos \theta + i\sin \theta)^{p}}$$
$$= \frac{1}{(\cos p\theta + i\sin p\theta)} \frac{(\cos p\theta - i\sin p\theta)}{(\cos p\theta - i\sin p\theta)} = (\cos p\theta - i\sin p\theta)$$
$$= (\cos(-p)\theta + i\sin(-p)\theta) = (\cos n\theta + i\sin n\theta)$$

Hence the proof. Note (1): $(\cos \theta + i \sin \theta)^{-n} = (\cos n\theta - i \sin n\theta)$.

Research Article

Note (2): $(\cos\theta + i\sin\theta)^n = (\cos n\theta + i\sin n\theta)$.

Note (3): $(\cos\theta - i\sin\theta)^{-n} = (\cos n\theta + i\sin n\theta)$.

Scope: Matrix operation is quite easy to all for solving; I hope this transformation may help for solving the equations involving complex variables. I want to develop this transformation and I wish to apply this in the conformal mappings.

REFERENCES

James ward brown, Ruel V Churchill (2004). Complex variable and applications/.-7th ed.p.cm-(Brown-Churchill series) *International Series in Pure and Applied Mathematics*.

Churchill, Ruel Vance (1899). Functions of complex variable I. -II. Title. III. series. IV, series: International series in pure and applied mathematics.

John B. Convay Functions of one complex variable -2^{nd} edition, (Springer international student edition), (narosa publications) **81** 85015-37-6.

Walter rudin Real and Complex analysis-3rd edition (Pushp print series, New Delhi) (Tata-MCGraw Hill Publishing company Ltd).

H Elton. Lacey The Isometric theory of Classical Banach Spaces-primary edition *Springer verlag* New York, Heidelberg Berlin.

Giovanni sansone-Johan gerretsen (1969). Lectures on the Theory of functions of S Complex Variable (Wolters –Noordhoff publishing Groningen 1969 the Netherlands).

WK Hayman. Multivalent Functions (Cambridge AT the University Press 1958)

Dr B S Grewal. Higher engineering mathematics2005) -39th edition (Hindustan offset press) (Khanna Publications) 81-7409-195-5

AR vasista, Dr R K Gupta (2009). Integral Transforms -28th edition (Krishna prakhasam media (P) Ltd .meerut) Book code 224-28

Kenneth Hoffman Ray Kunze (2002). Linear algebra -2nd edition (Printed hall India) 81 203-0270-2