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ABSTRACT 
As the Darcy’s parameter increases the velocity also increases. The no slip condition is perfectly 
satisfied on the boundary. For a similar values of Darcy’s parameter and when K = 0.10 the no 
slip condition is also satisfied. However, a backward flow is observed as we move away towards 
the other bounding surface. When the radiation parameter is held constant, it is observed that as 
the Darcy’s number increases the no slip condition is satisfied.  But a backward flow is observed.  
For such similar values of Darcy’s number and when R=7, the velocity profiles are seen to be of 
same type. An interesting point in this case is that the velocity profiles are merged till 40% of the 
channel width.  Thereafter, the dispersion in the velocity profiles is observed. In this case also, 
the flow appears to be more of backward and subsequently in the forward direction. 
 
Nomenclature: 
S   : Cauchy stress tensor 
p      : Scalar pressure 
  : Coefficient of viscosity 

1  : Coefficient of elasticity 

2  : Coefficient of cross-viscosity 
  : Density 
  : Coefficient of thermal expansion 
g  : Acceleration due to gravity 

0k  : Permeability of the porous medium 

0  : Transpiration cross flow 
k  : Viscoelastic parameter 
R  : Cross flow Reynolds number 
Re  : Reynold’s number 
Gr  : Grashof number 
Pr  : Prandtl number 
Da  : Darcy number 

T  : Wall temperature parameter 
  : Angle of inclination 
A  : Constant pressure gradient 
 
INTRODUCTION 
Non-Newtonian fluid mechanics has had to be point of concern with the development of general 
constitutive equations for visco elastic fluids. These constitutive equations should in principle 
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lead to the definition of flow properties that need to be measured to define the visco elastic fluid 
(rheometry) and to the development of the equivalent Navier-Stokes equations for the solution of 
all possible boundary value along with initial value problems that arises in several situations 
wherein heat and mass transfer takes place. The solution presented need to be quite specific 
about the experimental conditions pertaining to the relevant phenomena.  

Therefore, now the question that arises is to address the  situation “How do elastic liquids 
behave in complex flows?” and it is immediately apparent that the answer must involve a 
consideration of how the same liquids behave in simple flows, so that obtaining rheometrical 
data on the test liquids is an essential part of the exercise. Such data, when available, serve more 
than one useful purpose they certainly provide a foundation set of data, which must be 
accommodated in the associated mathematical model for the test liquids. That is to define a 
perfect constitutive equation, which is an essential ingredient in any theoretical resolution of the 
experimental dilemmas, has to be consistent with the rheometrical data. Indeed, if the model 
cannot simulate behaviour in simple flows, what chance does it have in complex flows?! Clearly, 
the choice of constitutive equation is central to the whole operation and this choice is far from 
trivial or obvious. Indeed, a constitutive model which satisfies the dual constraints of tractability 
and quantitative (or even semi quantitative) prediction may not exist! But that shouldn’t and 
doesn’t prevent a search for this missing link, but it is wise to be aware of the possibility of 
disappointment. 

The model that has been considered here is of second order fluid whose constitutive 
relation has been proposed by Noll. The relation involves visco elasticity and also covers the 
concept of cross viscosity. In many chemical processing industries generally slurry adheres to the 
reactor vessels and gets consolidated. As a result of this, the chemical compounds within the 
reactor vessel percolates through the boundaries causing loss of production and then consuming 
more reaction time. The slurry thus formed inside the reactor vessel often acts as a porous 
boundary for the next cycle of chemical processing.  

A porous medium may be either an aggregate of a large number of particles such as sand 
or gravel or solid containing many capillaries such as a porous rock. In all such cases, one has to 
consider the gross effect of the phenomena represented by a macroscopic view applied to the 
masses of fluid, large compared to the dimensions of the pore structure of the medium. The 
process can be described in terms of equilibrium of forces. The driving force necessary to move 
a specific volume of fluid at a certain speed through a porous medium is in equilibrium with the 
resistance force generated by internal friction between the fluid and the pore structure. This 
resistance force is characterized by Darcy’s semi-empirical law established by Darcy (1856). The 
simplest model for flow through a porous medium is the one dimensional model derived by 
Darcy (1856). Obtained from empirical evidence, Darcy’s law indicates that for an 
incompressible fluid flowing through a channel filled with a fixed, uniform and isotropic porous 
matrix, the flow speed varies linearly with longitudinal pressure variation. Subsequently, Dupuit 
and Frochheimer presented empirical evidence that the Darcy law or the linearity between speed 
and pressure variation, breaks down for large enough flow speed (a compilation of several 
experimental results) is presented by Mac Donald et al. (1979). This was emphasized later by 
Joseph et al. (1982) who stressed force modeled by the Frochheimer acts in a direction opposite 
to the velocity vector. It follows that, in multidimensional flow, the momentum equations for 
each velocity component derived using the Frochheimer extended Darcy equation is at least 
speculative. Later, Knupp and Lage (1995) analyzed the theoretical generalization to the tensor 
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permeability case (anisotropic medium) of the empirically obtained Frochheimer extended Darcy 
unidirectional flow model. 

Heat transfer in porous medium is gaining utmost importance due to its applicability in 
geothermal energy extraction, nuclear waste disposal, fossil fuels detection, regenerator bed etc. 
Understanding the development of hydro dynamic and thermal boundary layers along with the 
heat transfer characteristics is the basic requirement to further investigate the problem. Cheng 
and Minkowycz (1977) had analyzed the steady free convection about a vertical plate embedded 
in porous dynamics in the form of dissipative inequality (Clausius – Duhem) and commonly 
accepted the idea that the specific Helmholtz free energy should be a minimum in equilibrium.  
From the point of medium applied to heat transfer from dike.  Murthy and Singh (1977) using 
method of similarity solution studied the influence of lateral mass flux and thermal dispersion on 
non - Darcy natural convection over a vertical plate in porous medium. They have discussed the 
combined effect of thermal dispersion and fluid injection on heat stratification on non - Darcy 
mixed transfer. Hassanien et al. (1998) had studied the effects of thermal dispersion and 
dissipation effects on non – Darcy mixed convection problems and established the trend of heat 
transfer rate convection from a vertical plate in porous medium and investigated the flow and 
temperature fields. Subsequently, Murthy (1998) had examined the dispersion while, Kuznetsov 
(2000) investigated the effect of transverse thermal dispersion on forced convection in porous 
media and identified the situations favorable to heat transfer under dispersion effects.  

 
Mathematical Formulation 
We consider the laminar mixed convection flow of a visco elastic fluid through a porous medium 
in an inclined permeable channel, the space between the plates is h , as shown  
 

 
Figure 1: Geometry of the flow field when the channel is vertical 
 
          It is assumed that the rate of injection at one wall is equal to the rate of suction at the other 
wall.  A rectangular coordinate system  yx,    is chosen such that the x  axis is parallel to the 
gravitational acceleration vector g , but with opposite direction and the y - axis is transverse to 
the channel walls.  The left wall (i.e. at 0y ) is maintained at constant temperature 1T  and the 
right wall (i.e. at hy  ) is maintained at constant temperature 2T  , where 21 TT   . The flow is 
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assumed to be laminar, steady and is fully developed, i.e. the transverse velocity is zero.  Then, 

the continuity equation drops to 0



x
u

. 

The fluid under consideration is assumed to be of Rivlin-Ericksen type whose constitutive 
equation is proposed as 

2
12211 AAApIS                                              (1)                         

 The material constants , 1  and 2  can be determined from viscometric flows for any 
real fluid. 1A and 2A  are Rivlin-Ericksen tensors and they denote respectively the rate of  
strain and acceleration.  1A  and 2A  are defined by  

TVVA )(1                                                     (2) 

11
1

2 )( AVVA
dt

dAA T                                    (3) 

where 
dt
d

is the material time derivative and gradient operator and (  T) transpose operator. 

The viscoelastic fluids when modeled by Rivlin-Ericksen constitutive equation are termed as 
second grade fluids.  A detailed account of the characteristics of second – grade fluids is well 
documented by Dunn and Rajagopal (1995). Later, Rajagopal and Gupta [11] had studied the 
thermodynamics consideration and it is assumed that:               

     0  , 01   and 021                                        (4)  
The basic equations of momentum and energy governing such a flow, subject to the Boussinesq 
approximation, are  
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here 
dx
dp

 is a constant. 

 The boundary conditions are given by  

 0)()0(  huu ,    1)0( TT        and   2)( ThT                                                    (7) 
Introducing the following non-dimensional variables  
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into the Eqn. (5 ) and  Eqn. ( 6 ), we obtain 
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                                                                                         (9)                                 

where 2
1

h
k




 is the visco elastic parameter, 


 h
R 0

 
is the cross flow Reynolds number, 

2

3
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is the Reynolds number,


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Prandtl number,
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
  is the wall temperature parameter and   2

0)(
h

U
dx
dpA


  is the 

constant pressure gradient. 
The corresponding dimensionless boundary conditions are given by 

  0)1()0(  uu , Tr)0(  and 1)1(                                                          (10)     
     
Method of Solution 
We consider the first – order perturbation solution of the boundary value problem for small k .  
Since the constitute Eqn. (1) has been derived up to only the first–order of smallness of k , 
therefore, the perturbation solution obtained by retaining the terms up to the same order of 
smallness of k  must be quite logical and reasonable.  We write  
     10 kuuu                                                               (11) 
   and 10  k                                                              (12) 
Substituting Eqn. (11) and Eqn. (12) into Eqn. (8) and Eqn. (9) and boundary conditions given by 
Eqn. (10) and then equating the like powers of k , we obtain 
Zeroth-order system )( 0k : 
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together with boundary conditions  

  0)1()0( 00  uu  , Tr)0(0  and  1)1(0                                               (15) 
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together with boundary conditions  

          0)1()0( 11 uu   and      0)1()0( 11                             (18) 
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 Zeroth-order solution (or Solution for a Newtonian fluid): 
Solving Eqn. (13) and Eqn. (14) using the boundary conditions (15), we get 
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 First-order solution (or Solution for a second-grade fluid): 

Solving Eqn. (17) with corresponding boundary conditions, we obtain 
                      01                                                        (21) 
Substituting the Eqn. (20) and Eqn. (2)1 into the Eqn. (16) and then solving the resulting 
equation with the corresponding conditions, we get  
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 It can be verified that when 0k , 0R and Da our results reduces to those given 
by Aung and Worku  (1986) 
Finally, temperature is given by 
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and velocity is given by 
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Figure 1: Velocity Profiles with respect to Darcy’s Parameter 

 
Figure 2: Influence of Darcy’s Parameter on Velocity Profiles 
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Figure 3: Effect of Darcy’s Parameter on Velocity Profiles 

 
Figure 4: Variation in Velocity Profiles with respect to Darcy’s Parameter 
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Figure 5: Velocity Profiles with respect to Radiation Parameter 

 
Figure 6: Variation of Velocity with respect to Darcy’s parameter and Radiation Parameter 
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Figure 7: Influence of Radiation parameter and Darcy’s Radiation parameter 

 
Figure 8: Effect of Darcy’s parameter on Velocity profiles with respect to Radiation parameter 
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RESULTS AND CONCLUSIONS 
1. The nature of velocity profiles with respect to the Darcy’s and porosity of the fluid bed are 

illustrative in Fig-1, Fig-2, Fig-3, Fig-4.  In Fig-1it is noticed that, for a constant value of 
porosity, as the Darcy’s parameter increases the velocity also increases. The no slip condition 
is perfectly satisfied on the boundary. For a similar values of Darcy’s parameter and when K 
= 0.10 the no slip condition is also satisfied. However, a backward flow is observed as we 
move away towards the other bounding surface. Similar such a trend as stated above is 
noticed when K = 0.16. The velocity profiles are observed to be more dispersed as we 
approach the other boundary. Even for, K = 0.2 not much of significant trend in the velocity 
profiles is observed. Moreover, there seems to be no change in the nature of velocity profiles. 

 
2. The influence of radiation and Darcy’s parameter on the nature of velocity profiles is shown 

in Fig-5, Fig-6, Fig-7 and Fig-8. In Fig-5, when the radiation parameter is held constant, it is 
observed that as the Darcy’s number increases the no slip condition is satisfied.  But a 
backward flow is observed.  For such similar values of Darcy’s number and when R=7, the 
velocity profiles are seen to be of same type.  However, the magnitude of the backward flow 
is noticed to be slight altered. In Fig-7, when the radiation parameter is (R = 10), and for 
same values of Darcy’s parameter, a slight change in the velocity profiles is noticed.  As 
usual and as discussed above, more of backward flow is observed in this case.  An interesting 
point in this case is that the velocity profiles are merged till 40% of the channel width.  
Thereafter, the dispersion in the velocity profiles is observed.  Fig-8 depicts the variation in 
the velocity profiles when R=12 and the Darcy’s number ranging from 0.1 to 0.4.  In this 
case also, the flow appears to be more of backward and subsequently in the forward 
direction.  The conditions of the no slip are satisfied in this situation also.  
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