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ABSTRACT 
For forced time dependent harmonic oscillator a comparative study of different methods for the 
construction of invariants is carried out. Inspite of their different procedural details all the approaches lead 
to the same invariant for the given classical system. Limitations of different methods are briefly 
highlighted. 
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INTRODUCTION 
An invariant of a dynamical system is a single valued phase space function (Kaushal1998), which is in 
involution with the Hamiltonian and with other invariants, if they exist, for the system. A system is said to 
be integrable if it is possible to obtain all functionally independent invariants or constants of motion 
which are in involution among themselves and with the Hamiltonian of the system. For the systems 
involving explicit time dependence, however, one also looks for an additional invariant as its Hamiltonian 
is no longer a constant of motion. 
With regard to the construction of dynamical invariants several methods have been developed in the past 
(Lutzky1978,Hietarinta1987,Hall1983) and they are employed to study (Kaushal1998) the systems in one 
and higher dimensions, however, at times without noticing the underlying intricacies and the limitations 
of the methods. As a matter of fact, it is found that every method does not successfully work for every 
system. Further, these methods, while originating from different mathematical roots, interestingly, are 
found to provide the same result at least for certain systems. Sometimes, the reproduction of results for 
these latter systems becomes the testing ground for the newly developed method. One such case is that of 
time dependent (TD) harmonic oscillator or its variants in one dimension, first studied by Lewis 
(Lewis1968).  
With a view to highlight the underlying limitations and intricacies of some of the popular methods used in 
the past, here in the present work we investigate the example of a 1-D,TD, forced harmonic oscillator 
corresponding to a potential term, V(x,t)=1/2 ω2(t)x2 – f(t)x, in the Hamiltonian. In particular, the 
methods we discuss, are the following: 
a. Dynamical algebraic approach (Korsch1979,Kaushal and Korsch198)] 
b. Lutzky's approach using Noether's theorem (Lutzky1978)  
c. Transformation group approach (Ray1979,1980,Burgan et al1979)     
d. Ermakov's approach (Ermakov1880)  
e. Rationalization method (Kaushal1998;Whittaker1927) 
Construction of the Invariant 
a. Dynamical Algebraic Approach: Korsch (Korsch1979)and Kaushal and Korsch (Kaushal and 
Korsch1981) employed this approach to construct the invariants for a variety of TD systems. This 
algebraic technique (Takayama1982) provides a direct and unsophisticated derivation of dynamical 
invariants but only for a limited class of TD potentials. However, it allows a straight-forward transition 
from classical to quantum systems because in algebraic treatment the formulation of classical and 
quantum dynamics is almost identical except for the fact that Poisson bracket is now replaced by a 
commutator and dynamical variables become operators. 
For the present case of TD, forced harmonic oscillator  one writes the Hamiltonian as  
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Next, one applies the dynamical algebraic approach [Kaushal and Korsh1981] by identifying H in (1) as  
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Since the invariant I is also a phase space function and so is the member of the Lie algebra, it should be 
expressible as          
                     I= Σk λk(t) Ґk                                                                                (2) 
and satisfies 
  

                                                                                       (3) 
 
Further, note that the phase space functions Γ3, Γ4, Γ6 in this case are needed to close the algebra and are 
chosen mainly out of intuition. Further, in view of the closure property of the Lie algebra, the non 
vanishing Poisson brackets turnout to be 
 
           1 2 4,    ;      1 3 5,    ;      1 4 12,     ;      2 4 22,       (4) 

           2 5 3,    ;     3 4 3,     ;      3 5 6,    . 
As per prescription of this method, we use 
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to obtain the following set of first-order coupled differential equation  
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Assuming 5 =ψ (t) and 1  = 2(t), one immediately finds other 's as  
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Finally, the invariant for the forced harmonic oscillator turns out to be  
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where (t) and ψ(t) are arbitrary functions satisfying the auxillary equations  
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and             fft   3)( 22   .              (7) 
 
Eqs. (6) and (7) constitute an Ermakov system of equations [Ermakov1880], where K is some arbitrary 
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constant. Note that in this particular example, the phase space function 6 turns out to be a constant 
quantity. 
b. Lutzky's Approach: Lutzky [Lutzky1978] suggested a method for constructing an invariant using the 
results of Noether’s theorem for the Lagrangian L x x t( ,  , ) .In this approach, the symmetry transformation 
is described by the group operator  

                                             

If the transformation described by the group operator X leaves the action A L x x t  ( ,  , )dt invariant, 
then a certain combination of derivative terms gives rise to terms equal to the total time derivative of a 
function F, viz.,  

                 ),()( txFL
x
Lx

x
L

t
L 


  








          (8) 

Finally, the constant of motion for the above system turns out to be  
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where   ,    and  are defined as  
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Now, corresponding to a forced harmonic oscillator consider the Lagrangian  
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with concomitant equation of motion  
                   )()(2 tfxtx    .                                                       (11) 
For this form of L, eq. (8) yields  
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where (t),(t) and (t) are arbitrary functions of t.  For the equations of motion to have Noether's 
symmetry, the expression (11) can be rationalized in the powers of x, implying  
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Through the transformation  = 2(t), the above set of equations immediately yields  
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Finally the Noether invariant (9) takes the form  
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which is exactly the same as obtained by using dynamical algebraic approach. 
 
c. Transformation-Group Method: Ray (Ray1979,1980)constructed the invariant for a forced. TD 
harmonic oscillator by using transformation-group technique.  This method suggested by Burgan et al 
(Burgan et al 1979) transforms the equation of motion (11) via the transformation  
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In order that the form of this equation remains invariant under the group transformation (14), one should 
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To simplify eq.(15), we set the arbitrary functions (t) and A(t) such that  
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The last expression reduces to the relation  
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Finally, the equation of motion in the primed coordinates turns out to be 
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and the invariant I, after inverse transformation, reduces to the form  
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where,  is any solution to (18) and A is any solution to (19). 
Using (20) and (21) the above invariant reduces to  
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which again has the same mathematical structure as in eq. (13) or (5) 
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d. Ermakov Method:  Ray and Reid [Ray and Reid1971,1979,1982] and several others(see for example 
the references cited in [Kaushal1998]) have applied this method to a variety of TD oscillator problems 
and their possible generalizations.  In their course of study they have evolved a method of constructing 
the invariant for 1-D, TD systems known as Ermakov method and the invariant so constructed is termed 
as Ermakov invariant in the literature.   Consider the system of forced TD harmonic oscillator described 
by eq. (11) with auxiliary equations  
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Now eliminate 2(t) from eqs. (11) and (24) and multiply the resultant expression by the factor,  
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Next, eliminate 2(t) from (11) and (25) and rearranging the terms in the resulting equation, one obtains  
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A comparison of eqs. (26) and (27) immediately yields the invariant 
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which is exactly of the same form as obtained in the three previous methods.  In fact, due to the presence 
of two TD functions in the equation of motion (11), two auxiliary equations are required here whereas in 
the absence of the forcing term in (10) there remains only one auxiliary equation.   
 
e. Rationalization Method: In the rationalization method, one normally considers an ansatz  for the nth 
order invariant for a 1-D,  TD system [Kaushal1998]  as    
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the method for an arbitrary potential in general can be found in [Kaushal1998], we concentrate here on 
the construction of invariant for the system (1) and use the terms upto   in (29). To this effect, we use 
(29) upto  term in (3) and rationalize the resultant expression with respect to the powers of  x. For the 
construction of second-order invariant in momentum this yields (Kaushal1998) the following set of 
coupled partial differential equations for the coefficients ai’s in (29)  
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The integration of eq.(30a) and (30b) immediately yields  
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where β and ψ are arbitrary functions of t. For V in (30),we use the form given in (1). Then, eliminating 
a0(x,t) from eq.(30c) and (30d) and rationalizing the resultant expression in powers of x gives rise to two 
auxiliary equations (after identifying   2 ( )t ), namely  
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Finally, using (31) and (32) in expression (29) one obtains the invariant in the form  
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which is exactly the same as demonstrated by other four approaches. 
 
Viability of Different Methods 
Different methods are used for the construction of invariants for 1-D, TD forced harmonic oscillator and 
all the methods lead to the same form of dynamical invariant.To this particular form of potential the 
viability of a formal method like rationalization method is demonstrated here for the first time. Although 
none of the methods has a universal character, in the recent years the Lie algebraic approach for 
construction of dynamical invariants has provided many interesting results (Kaushal and 
Mishra1993),(Kaushal and Gupta2001),(Kaushal et al 2001). It has additional advantage of having a 
straight forward application to quantum mechanical systems and classical systems in higher dimensions, 
yet its limitation in providing second invariant for 2- and 3-D, TD systems could not be ruled out. 
Ermakov method, for constructing invariant, is systematic and uses simple mathematics as used to derive 
constants of motion in mechanics. The weakness of Ermakov procedure is that we must know both the 
equation of motion for the system and the auxiliary equation in order to derive the invariant. As the 
auxiliary equations for the forced harmonic oscillator, Ref equation (6) and (7) are set in advance for an 
arbitrary form of V(x, t) ,however such a guess becomes a difficult task and one has to try the formal 
methods. However for a general equation of motion, auxiliary equations are not known and a different 
method is required. 
Moreover in the Lie algebraic approach certain features of the equation of motion (like linearity or non- 
linearity) are retained through the closure property of the algebra. This is not the case in rationalization 
method which is most commonly used for TD systems. Here however the degree of complexity further 
increases as we move to higher dimensions. 
 
CONCLUSION 
Invariants if they exist can be very useful in studying the theoretical structure of dynamical systems. In 
this work we have demonstrated the viability of various methods using the example of forced TD 
harmonic oscillator. Inspite of so many methods for 1-D systems, not many new systems are found for 
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which the invariants can be constructed. Moreover not all the methods used are yet applied to higher 
dimensional systems, where the underlying intricacies of a method are reflected much more. 
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