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ABSTRACT

The 3D non-linear Schrodinger type Equation with the appropriate initial-boundary conditions is
considered. By introducing a new functions the equation is reduced to the system of partial differential
equations.In some cases the effective solutions are obtained. The approximate solution is constructed by
means of explicit finite-difference schemes.
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INTRODUCTION

Schrodinger Equation describes various physical phenomena. Linear Schrodinger Equation Describes
guantum processes and in some special cases the effective solutions are obtained (see for example Auletta
et. al(2009), Landau and Lifshitz (1977), Simon (2000)).

Non-linear Schrodinger type equation describes electron plasmic waves, waves in ultraconducted fluid,
electromagnetic ion cyclotron waves with sufficiently large amplitude, waves in cosmic gases, etc.,
Alexandrov et. al (1984), Anderson and Hamilton (1993), Gurevich and Shvartsburg (1973), Hasegava
and Matsumoto (2002), Lions (1969), Summers et. al (1998), Tsintsadze et. al (2010) , Sulem (1999) ,
Simon (2000), Whitham (1974), Zakharov and Shabat (1972).

Numerous works are devoted to the spectral properties of Schrodinger operator: Cazenave and Weissler
(1989), Ginibre and Velo (1979), Kwong (1989),Weinstein (1989), Simon (1997),Sulem (1999), Laptev
et. al (2005), Safronov (2004),. Blow —up solutions in time of critical non-linear Schrodinger equation
were studied by Merle (1990), Merle and Raphael (2005), Perelman (2001), Bourgain and Wang (1998).

Here we consider non-linear Schrddinger equation in R® and some parallelepiped. By introducing a new
functions the equation is reduced to the system of partial differential equations, which is more convenient

for investigation. The bounded solutions in R® are constructed. In 1D the solutions with singularities are
fond at some interval . In 2D parallelepiped the approximate solution is constructed by means of explicit
finite-difference schemes .

SETTING OF THE PROBLEM

In 3D space let us choose the coordinate system Oxyz and consider some area G,.We admit that

G, =R® or G, is a parallelepiped G, = {0 < x<a,0<y<b,0<z<c,}, where a,,b,,c,are the
definite constants.

Inthearea Q; =G, x {0 <t<T } we consider the following Schrddinger's type Equation

oY

iE+A‘P+A“P2“P:O, 1)
with the initial condition

\I’|t=0=\P0(x,y,z)=U0 +iV g, )
and with the boundary condition (if G, is bounded)

[#]2,= Co.
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where  is a wave function, ¥ =U +1V, 4 is some parameter, Y, is the given continuous functions,

C,is a constant, 0G,, isa boundary of G,

The Cauchy problem (1), (2) is locally well-posed (Lions (1969), Cazenave and Weissler (1989).Ginibre
and Velo (1979)).
CONSTRUCTION OF THE SOLUTIONS
The equation (1) is equivalent to the following system of partial differential equations
Y __av — AV (U?%+V?2),
ot
oV ®)
a—t=AU + AU (U 2 +V2),

Let us introduce the notations

U=rcose;, V =rsing,

Taking into the account (4) the system (3) becomes

gcosw—sin (pa—(pz—sm @ Ar—2cos ¢| — or aq) a aq) o e
ot ot OX OX ay oy az oz

o9 2 (00) (60) (%)
ax oy oz
a—sm (P+rCOS(P8—(p—COS(p Ar —2sin ¢| — or 8(p or 8(p or op
ot ot OX OX ay oy i
(6)

3] (5] (3] o)

After simple transformations from (5), (6) we obtain

o M{(a_q (2] (%) }A 0
ot OX oy 0z

g: -2 ga_q)_i_ga_@_i_ga_@ _rAgo; (8)

ot OX OX ©oyoy ooz
Let u rewrite (7), (8) in the form

2 2 2

r at OX oy oz

Ago:—ﬁlnr— 2 —(In r)aq) 2 —(In r)aq) 2 —(In r)aq) (10)
ot OX ox oy oy oz 0z

Let us consider some particular cases:
1. Suppose
r=r(xy,2)e"; @=0y(xy, 2)+De™ +At, (11)
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where C,; A,; D,;7;¥, are some constants, I,;¢, are the functions to be determined.
Putting (11) into (9), (10) we obtain

2 2 2
ﬂ+}Lezﬂr02 =Dy’ + A, + [a(poJ +[ 9% +[6¢°J ; (12)
r OX oy 0z
0 op, O op, 0O op
Ap, =—o—20—(Inry)—>+—(Inr,)—>+—(Inry)—>; 13
Do a {GX( 0) ox ay( 0) oy 82( 0) P (13)

2. Incaseof y =0;r =r, =const from (12), (13) we obtain

e ﬁ_m{[acooy{acpo}z{acoojz} (1)
ot OX oy 0z

and effective solution of (14) will be given by (Courant and Hilbert (1989))

p=Ax+By+Cz+At+D, (15)

where

AZ+B+Cl+ A, = Ar7; (16)

Consequently, the solution of the system (3) is of the form

U =r,cos(Ax+B,y+C,z+At+D,), (17)

V =r,sin(Ax+By+C,z+At+D,), (18)

where A, B,,C,A are the constants connected with the condition (16).

The solutins (16), (17) are bounded in R® and satisfies the following initial conditions

U =r,cos(Ax+B,y+C,z+D,); t=0,

V =r,;sin(Ax+By+C;z+D,); t=0.

It is obvious U? +V? = roz. The graphs of (17) and (18) are plotted by means of the computer program
Maple and are given in the figures Fig.1 and

E
Fig 1: Profileof U inthecase A=A =B, =C, =A =D, =11, =2z=1t=1
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Fig 2: Profile of Vinthecase A=A =B, =C, =A =D, =Lr,=2z=1t=1

3. Now, let us suppose
r=re”; @=g¢,(xY,z)+De™ +At, r=r,=const,
than the system (12), (13) becomes

2t 2 t 00, Y (00, (00, Y| .
A7l =Dy ™ + A + + + ; (19)
OX oy oz
Ap, =-a; (20)

The solution of this system exists only in the case 17 = D,y,;7, =7 =0; A, <0; and is given by (15),
(16).

In case of 17 =D,y.7, =2a;a=-2;A, <0;0p=Ax*+Ay>+Az°+At+D,, the system (19),
(20) is satisfied only at the sphere A (X* +y? +2%) = —A,.

4. In case of ¢ = Ajt+ D,, r does not depend on time and (12) implies
Ar+Ar® =Ar. (21)
Here r;r > 0 and the unique solution of this type exists Kwong (1989).

In the case, when r depends only on one variable X, the equation (21) could be reduced to the following
differential equation

A
p? :Aorz—zr“—ZBoJrBf, (22)
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or A 4 p*(0).

where p =&’ BO =%I’02 —ZI’O4, Bl =T, = r(0).

The solution of the equation (22) will be given in the implicit form by the formula
rin dy

[ T,
" Ja-yHa-k’y?)

(23)

X =-k V2
V=2
where

kzi;rzzwao—i; r1=1/D0+i;
r, A A

D, :ﬁ@g —~A(4B,-2B7); A —A(4B,-2B})>0

(23) is the elliptic integral with the modulus k. Inversion of this integral is the Jakobi sinus and is given
by Courant and Hurvitz (1929)

) .
ka2
As we seak for real solution, we will consider the following cases:
1

r=rnsn(-k,x+r,);k, = (24)

K dt
K'= .
'!\/(tz ~1)(L-k2t?)

Solutions of this type has singularity at the point K';

1. 120; 0<—kx+r, <K%

1
K =J~ dt

2 J(L-t2)(1—k?t?)
In the case of 2 variables the numerical solution of the equation (21) will be given by the explicit finite-
difference schemes. In this case we consider the egaution (15) at some rectangular area G, with the
boundary conditions

M o6, = fo = CONSL;

2. 2<0;0<-kx+r, <K

where dG, is aboundary of thearea G, ={0<x<a,, 0<y<bh,}.

Let us introduce the notation u =r —r, and rewrite (21) in the form

Au=ful+ fu?+fu+f,, u‘a%: 0, (25)

where f, =-A4; f, =34r,; f, = A -34; f, = A} — Ar,.

The area of integration G, we divide by the planes x; =ih,; y; = jh,;1=012,..,M;j=01,...,N; into
cells, where h, =a,/M;h, =b, /N;

Consequently, for the area G, we introduce the following grids

@, = {xi =ih;;y; = jh,;i=012,..,M;]j :0,1,...,N;}

For net functions and their difference derivatives we introduce the following notations

Uy =hi(u(><+h1,y)—u(x,y)),

1
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u, =hi(u(x,y+h2)—U(X, y)),

2

4, = (U0 Y) ~u(x=h.Y)),

u; =hi(u(x,y)—u(x,y—hz)),

1 1
AU =E(ux +U-), AU =E(uy +u§),

Apu=u., Apu= U

For the problem (25) we have constructed the following finite-difference schemes

—0oT Ayl =U,; +U,, + (26)

f=fu’+fu’+fu+f,,

Ukt oyt )
X

—or’A, = =u2¥l+ Uy, +(fou® + fu® + fu+ f))f (27)
_ |k;11 2uk+1 +U.k+11, _9 U 1] 2U +ul+lj I u; 1] 2uk N +ul+lj ¢
hf hf hf v
—%(uikfllj +U{ )+ Z%USH =F (28)
h, ' ' h,
20 1 o _
Fij = [ul -1,j 2U +ul+lj] h_z(ul -1,j 2U +ul+lj) E(ul -1,j 2uk -+ ulﬁl:}j)
1
1 K
+= = ( Uiy — 25 +uf 1+1) {f0u§ + ful + fu; + f3}ij : (29)

The schemes (26), (27), (28), (29) are absolutely stable and convergent. The accuracy of this schemes is
O(h?) and is proved as in Komurjishvili (2007).

CONCLUSION

1. In 3D there exists the bounded solution of the problem (1),(2), which is given by the formulas
(16),(17), (18).

2. It is clear from (9), (10), that if ¢ depends only on time, then r does not depend on time.

3. In 1D case solutions of (1),(2) of the type ¥ = re'™™*®  exist only at some interval :
I) ForA>0; 0<—k,x+r, <K', and has singularity at the point K';

) For A<0; 0< -k x+r, <K,

where k;;r,; K; K" are definite constants.
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