Research Article

ON THE NON-LINEAR SCHRÖDINGER TYPE EQUATION

*N. Khatiashvili, R. Shanidze and O. Komurjishvili
${ }^{I}$ Vekua Institute of Applied Mathematics of Iv. Javakhishvili Tbilisi State University, 0186 University Street 2, Tbilisi, Georgia
*Author for Correspondence

Abstract

The 3D non-linear Schrödinger type Equation with the appropriate initial-boundary conditions is considered. By introducing a new functions the equation is reduced to the system of partial differential equations.In some cases the effective solutions are obtained. The approximate solution is constructed by means of explicit finite-difference schemes.

Subject Classification: (AMS) 35Q41;35R10;47J05; 65D25.
Key Words: Non-Linear Schrödinger Equation, System Of Partial Differential Equations, FiniteDifference Schemes.

INTRODUCTION

Schrodinger Equation describes various physical phenomena. Linear Schrödinger Equation Describes quantum processes and in some special cases the effective solutions are obtained (see for example Auletta et. al(2009), Landau and Lifshitz (1977), Simon (2000)).
Non-linear Schrodinger type equation describes electron plasmic waves, waves in ultraconducted fluid, electromagnetic ion cyclotron waves with sufficiently large amplitude, waves in cosmic gases, etc., Alexandrov et. al (1984), Anderson and Hamilton (1993), Gurevich and Shvartsburg (1973), Hasegava and Matsumoto (2002), Lions (1969), Summers et. al (1998), Tsintsadze et. al (2010), Sulem (1999), Simon (2000), Whitham (1974), Zakharov and Shabat (1972).
Numerous works are devoted to the spectral properties of Schrödinger operator: Cazenave and Weissler (1989), Ginibre and Velo (1979), Kwong (1989),Weinstein (1989), Simon (1997),Sulem (1999), Laptev et. al (2005), Safronov (2004),. Blow -up solutions in time of critical non-linear Schrodinger equation were studied by Merle (1990), Merle and Raphael (2005), Perelman (2001), Bourgain and Wang (1998).
Here we consider non-linear Schrödinger equation in R^{3} and some parallelepiped. By introducing a new functions the equation is reduced to the system of partial differential equations, which is more convenient for investigation. The bounded solutions in R^{3} are constructed. In 1D the solutions with singularities are fond at some interval . In 2D parallelepiped the approximate solution is constructed by means of explicit finite-difference schemes .

SETTING OF THE PROBLEM

In 3D space let us choose the coordinate system $O x y z$ and consider some area G_{0}.We admit that $G_{0}=R^{3}$ or G_{0} is a parallelepiped $G_{0}=\left\{0<x<a_{0}, 0<y<b_{0}, 0<z<c_{0}\right\}$, where a_{0}, b_{0}, c_{0} are the definite constants.
In the area $Q_{T}=G_{0} \times\{0<t<T\}$, we consider the following Schrödinger's type Equation
$i \frac{\partial \Psi}{\partial t}+\Delta \Psi+\lambda\left|\Psi^{2}\right| \Psi=0$,
with the initial condition
$\left.\Psi\right|_{t=0}=\Psi_{0}(x, y, z)=U_{0}+i V_{0} ;$
and with the boundary condition (if G_{0} is bounded)
$\mid \Psi \|_{\partial G_{0}}=C_{0}$,

Research Article

where ψ is a wave function, $\psi=U+i V, \lambda$ is some parameter, Ψ_{0} is the given continuous functions, C_{0} is a constant, ∂G_{0} is a boundary of G_{0}.
The Cauchy problem (1), (2) is locally well-posed (Lions (1969), Cazenave and Weissler (1989).Ginibre and Velo (1979)).

CONSTRUCTION OF THE SOLUTIONS

The equation (1) is equivalent to the following system of partial differential equations

$$
\left\{\begin{array}{l}
\frac{\partial U}{\partial t}=-\Delta V-\lambda V\left(U^{2}+V^{2}\right), \tag{3}\\
\frac{\partial V}{\partial t}=\Delta U+\lambda U\left(U^{2}+V^{2}\right),
\end{array}\right.
$$

Let us introduce the notations
$U=r \cos \varphi ; \quad V=r \sin \varphi$,
Taking into the account (4) the system (3) becomes

$$
\frac{\partial r}{\partial t} \cos \varphi-\sin \varphi \frac{\partial \varphi}{\partial t}=-\sin \varphi \Delta r-2 \cos \varphi\left(\frac{\partial r}{\partial x} \frac{\partial \varphi}{\partial x}+\frac{\partial r}{\partial y} \frac{\partial \varphi}{\partial y}+\frac{\partial r}{\partial z} \frac{\partial \varphi}{\partial z}\right)
$$

$$
\begin{equation*}
-r\left\{-\sin \varphi\left(\left(\frac{\partial \varphi}{\partial x}\right)^{2}+\left(\frac{\partial \varphi}{\partial y}\right)^{2}+\left(\frac{\partial \varphi}{\partial z}\right)^{2}\right)+\cos \varphi \Delta \varphi\right\}-\lambda r^{3} \sin \varphi \tag{5}
\end{equation*}
$$

$$
\frac{\partial r}{\partial t} \sin \varphi+r \cos \varphi \frac{\partial \varphi}{\partial t}=\cos \varphi \Delta r-2 \sin \varphi\left(\frac{\partial r}{\partial x} \frac{\partial \varphi}{\partial x}+\frac{\partial r}{\partial y} \frac{\partial \varphi}{\partial y}+\frac{\partial r}{\partial z} \frac{\partial \varphi}{\partial z}\right)
$$

$$
\begin{equation*}
-r\left\{-\cos \varphi\left(\left(\frac{\partial \varphi}{\partial x}\right)^{2}+\left(\frac{\partial \varphi}{\partial y}\right)^{2}+\left(\frac{\partial \varphi}{\partial z}\right)^{2}\right)+\sin \varphi \Delta \varphi\right\} \tag{6}
\end{equation*}
$$

After simple transformations from (5), (6) we obtain

$$
\begin{align*}
-r \frac{\partial \varphi}{\partial t} & =-\Delta r+r\left\{\left(\frac{\partial \varphi}{\partial x}\right)^{2}+\left(\frac{\partial \varphi}{\partial y}\right)^{2}+\left(\frac{\partial \varphi}{\partial z}\right)^{2}\right\}-\lambda r^{3} \tag{7}\\
\frac{\partial r}{\partial t} & =-2\left(\frac{\partial r}{\partial x} \frac{\partial \varphi}{\partial x}+\frac{\partial r}{\partial y} \frac{\partial \varphi}{\partial y}+\frac{\partial r}{\partial z} \frac{\partial \varphi}{\partial z}\right)-r \Delta \varphi \tag{8}
\end{align*}
$$

Let u rewrite (7), (8) in the form

$$
\begin{align*}
& \frac{\Delta r+\lambda r^{3}}{r}=\frac{\partial \varphi}{\partial t}+\left\{\left(\frac{\partial \varphi}{\partial x}\right)^{2}+\left(\frac{\partial \varphi}{\partial y}\right)^{2}+\left(\frac{\partial \varphi}{\partial z}\right)^{2}\right\} \tag{9}\\
& \Delta \varphi=-\frac{\partial}{\partial t} \ln r-\left\{\frac{\partial}{\partial x}(\ln r) \frac{\partial \varphi}{\partial x}+\frac{\partial}{\partial y}(\ln r) \frac{\partial \varphi}{\partial y}+\frac{\partial}{\partial z}(\ln r) \frac{\partial \varphi}{\partial z}\right\} \tag{10}
\end{align*}
$$

Let us consider some particular cases:

1. Suppose
$r=r_{0}(x, y, z) e^{\gamma t} ; \quad \varphi=\varphi_{0}(x, y, z)+D_{1} e^{\gamma_{0} t}+A_{0} t$,

Research Article

where $C_{0} ; A_{0} ; D_{1} ; \gamma ; \gamma_{0}$ are some constants, $r_{0} ; \varphi_{0}$ are the functions to be determined.
Putting (11) into (9), (10) we obtain

$$
\begin{align*}
& \frac{\Delta r_{0}}{r_{0}}+\lambda e^{2 \gamma t} r_{0}^{2}=D_{1} \gamma_{0} e^{\gamma_{0} t}+A_{0}+\left\{\left(\frac{\partial \varphi_{0}}{\partial x}\right)^{2}+\left(\frac{\partial \varphi_{0}}{\partial y}\right)^{2}+\left(\frac{\partial \varphi_{0}}{\partial z}\right)^{2}\right\} ; \tag{12}\\
& \Delta \varphi_{0}=-\alpha-2\left\{\frac{\partial}{\partial x}\left(\ln r_{0}\right) \frac{\partial \varphi_{0}}{\partial x}+\frac{\partial}{\partial y}\left(\ln r_{0}\right) \frac{\partial \varphi_{0}}{\partial y}+\frac{\partial}{\partial z}\left(\ln r_{0}\right) \frac{\partial \varphi_{0}}{\partial z}\right\} \tag{13}
\end{align*}
$$

2. In case of $\gamma=0 ; r=r_{0}=$ const from (12), (13) we obtain
$\lambda r_{0}^{2}=\frac{\partial \varphi}{\partial t}+\left\{\left(\frac{\partial \varphi_{0}}{\partial x}\right)^{2}+\left(\frac{\partial \varphi_{0}}{\partial y}\right)^{2}+\left(\frac{\partial \varphi_{0}}{\partial z}\right)^{2}\right\}$
and effective solution of (14) will be given by (Courant and Hilbert (1989))
$\varphi=A_{1} x+B_{1} y+C_{1} z+A_{0} t+D_{1}$,
where
$A_{1}^{2}+B_{1}^{2}+C_{1}^{2}+A_{0}=\lambda r_{0}^{2} ;$
Consequently, the solution of the system (3) is of the form
$U=r_{0} \cos \left(A_{1} x+B_{1} y+C_{1} z+A_{0} t+D_{1}\right)$,
$V=r_{0} \sin \left(A_{1} x+B_{1} y+C_{1} z+A_{0} t+D_{1}\right)$,
where $A_{1}, B_{1}, C_{1} A_{0}$ are the constants connected with the condition (16).
The solutins (16), (17) are bounded in R^{3} and satisfies the following initial conditions
$U=r_{0} \cos \left(A_{1} x+B_{1} y+C_{1} z+D_{1}\right) ; \quad t=0$,
$V=r_{0} \sin \left(A_{1} x+B_{1} y+C_{1} z+D_{1}\right) ; \quad t=0$.
It is obvious $U^{2}+V^{2}=r_{0}^{2}$. The graphs of (17) and (18) are plotted by means of the computer program Maple and are given in the figures Fig. 1 and

F
Fig 1: Profile of U in the case $\lambda=A_{1}=B_{1}=C_{1}=A_{0}=D_{1}=1 ; r_{0}=2 ; z=1 ; t=1$.

Fig 2: Profile of V in the case $\lambda=A_{1}=B_{1}=C_{1}=A_{0}=D_{1}=1 ; r_{0}=2 ; z=1 ; t=1$.
3. Now, let us suppose
$r=r_{0} e^{\gamma} ; \quad \varphi=\varphi_{0}(x, y, z)+D_{1} e^{\gamma_{0} t}+A_{0} t, r=r_{0}=$ const,
than the system (12), (13) becomes
$\lambda e^{2 \lambda t} r_{0}^{2}=D_{1} \gamma_{0} e^{\gamma_{0} t}+A_{0}+\left\{\left(\frac{\partial \varphi_{0}}{\partial x}\right)^{2}+\left(\frac{\partial \varphi_{0}}{\partial y}\right)^{2}+\left(\frac{\partial \varphi_{0}}{\partial z}\right)^{2}\right\} ;$
$\Delta \varphi_{0}=-\alpha ;$
The solution of this system exists only in the case $r_{0}^{2}=D_{1} \gamma_{0} ; \gamma_{0}=\gamma=0 ; A_{0}<0$; and is given by (15), (16).

In case of $r_{0}^{2}=D_{1} \gamma_{0} ; \gamma_{0}=2 \alpha ; \alpha=-2 ; A_{0}<0 ; \varphi=A_{1} x^{2}+A_{1} y^{2}+A_{1} z^{2}+A_{0} t+D_{1}$, the system (19), (20) is satisfied only at the sphere $A_{1}\left(x^{2}+y^{2}+z^{2}\right)=-A_{0}$.
4. In case of $\varphi=A_{0} t+D_{1}$, r does not depend on time and (12) implies
$\Delta r+\lambda r^{3}=A_{0} r$.
Here $r ; r \geq 0$ and the unique solution of this type exists Kwong (1989).
In the case, when r depends only on one variable x, the equation (21) could be reduced to the following differential equation

$$
\begin{equation*}
p^{2}=A_{0} r^{2}-\frac{\lambda}{2} r^{4}-2 B_{0}+B_{1}^{2}, \tag{22}
\end{equation*}
$$

Research Article

where $p=\frac{\partial r}{\partial x} ; B_{0}=\frac{A_{0}}{2} r_{0}^{2}-\frac{\lambda}{4} r_{0}^{4} ; B_{1}=\frac{p^{2}(0)}{2} ; r_{0}=r(0)$.
The solution of the equation (22) will be given in the implicit form by the formula

$$
\begin{equation*}
x=-k \frac{\sqrt{2}}{\sqrt{-\lambda}} \int_{0}^{r / r_{1}} \frac{d y}{\sqrt{\left(1-y^{2}\right)\left(1-k^{2} y^{2}\right)}} .-r_{0} \tag{23}
\end{equation*}
$$

where

$$
\begin{aligned}
& k=\frac{1}{r_{2}} ; r_{2}=\sqrt{D_{0}-\frac{A_{0}}{\lambda}} ; \quad r_{1}=\sqrt{D_{0}+\frac{A_{0}}{\lambda}} ; \\
& D_{0}=\frac{1}{|\lambda|} \sqrt{A_{0}^{2}-\lambda\left(4 B_{0}-2 B_{1}^{2}\right)} ; \quad A_{0}^{2}-\lambda\left(4 B_{0}-2 B_{1}^{2}\right) \geq 0
\end{aligned}
$$

(23) is the elliptic integral with the modulus k . Inversion of this integral is the Jakobi sinus and is given by Courant and Hurvitz (1929)

$$
\begin{equation*}
r=r_{1} \operatorname{sn}\left(-k_{1} x+r_{0}\right) ; k_{1}=\frac{\sqrt{-\lambda}}{k \sqrt{2}} \tag{24}
\end{equation*}
$$

As we seak for real solution, we will consider the following cases:

$$
\text { 1. } \lambda \geq 0 ; 0 \leq-k_{1} x+r_{0} \leq K^{\prime} ; \quad K^{\prime}=\int_{1}^{\frac{1}{k}} \frac{d t}{\sqrt{\left(t^{2}-1\right)\left(1-k^{2} t^{2}\right)}}
$$

Solutions of this type has singularity at the point K^{\prime};
2. $\lambda \leq 0 ; 0 \leq-k_{1} x+r_{0} \leq K$

$$
K=\int_{0}^{1} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)}}
$$

In the case of 2 variables the numerical solution of the equation (21) will be given by the explicit finitedifference schemes. In this case we consider the eqaution (15) at some rectangular area G_{0} with the boundary conditions

$$
\left.r\right|_{\partial G_{0}}=r_{0}=\text { const } ;
$$

where ∂G_{0} is a boundary of the area $G_{0}=\left\{0<x<a_{0}, \quad 0<y<b_{0}\right\}$.
Let us introduce the notation $u=r-r_{0}$ and rewrite (21) in the form
$\Delta u=f_{0} u^{3}+f_{1} u^{2}+f_{2} u+f_{3},\left.u\right|_{\partial G_{0}}=0$,
where $f_{0}=-\lambda ; f_{1}=3 \lambda r_{0} ; f_{2}=A_{0}-3 \lambda ; f_{3}=\lambda r_{0}^{3}-A_{0} r_{0}$.
The area of integration G_{0} we divide by the planes $x_{i}=i h_{1} ; y_{j}=j h_{2} ; i=0,1,2, \ldots, M ; j=0,1, \ldots, N$; into cells, where $h_{1}=a_{0} / M ; h_{2}=b_{0} / N$;
Consequently, for the area G_{0} we introduce the following grids
$\varpi_{h}=\left\{x_{i}=i h_{1} ; y_{j}=j h_{2} ; i=0,1,2, \ldots, M ; j=0,1, \ldots, N ;\right\}$
For net functions and their difference derivatives we introduce the following notations
$u_{x}=\frac{1}{h_{1}}\left(u\left(x+h_{1}, y\right)-u(x, y)\right)$,

Research Article

$$
\begin{aligned}
& u_{y}=\frac{1}{h_{2}}\left(u\left(x, y+h_{2}\right)-u(x, y)\right), \\
& u_{\bar{x}}=\frac{1}{h_{1}}\left(u(x, y)-u\left(x-h_{1}, y\right)\right), \\
& u_{\bar{y}}=\frac{1}{h_{2}}\left(u(x, y)-u\left(x, y-h_{2}\right)\right), \\
& \Delta_{1} u=\frac{1}{2}\left(u_{x}+u_{\bar{x}}\right), \Delta_{2} u=\frac{1}{2}\left(u_{y}+u_{\bar{y}}\right),
\end{aligned}
$$

$$
\Delta_{11} u=u_{x \bar{x}}, \quad \Delta_{22} u=u_{y \bar{y}},
$$

For the problem (25) we have constructed the following finite-difference schemes

$$
\begin{align*}
& -\sigma \tau^{2} \Delta_{11} u_{i \bar{t}}=u_{x_{1} \overline{1}_{1}}+u_{x_{2} \bar{x}_{2}}+f, \tag{26}\\
& f=f_{0} u^{3}+f_{1} u^{2}+f_{2} u+f_{3}, \\
& -\sigma \tau^{2} \Delta_{11} \frac{u^{k+1}-2 u^{k-1}}{\tau^{2}}=u_{x_{2} \bar{x}_{1}}^{k}+u_{x_{2} \bar{x}_{2}}^{k}+\left(f_{0} u^{3}+f_{1} u^{2}+f_{2} u+f_{3}\right)_{i j}^{k}, \\
& -\left\{\frac{u_{i-1, j}^{k+1}-2 u_{i j}^{k+1}+u_{i-1, j}^{k+1}}{h_{1}^{2}}-2 \frac{u_{i-1, j}^{k}-2 u_{i j}^{k}+u_{i+1, j}^{k}}{h_{1}^{2}}+\frac{u_{i-1, j}^{k-1}-2 u_{i j}^{k-1}+u_{i+1, j}^{k-1}}{h_{1}^{2}}\right\}=\phi_{i j}, \\
& -\frac{\sigma}{h_{1}^{2}}\left(u_{i-1, j}^{k+1}+u_{i+1, j}^{k+1}\right)+2 \frac{\sigma}{h_{1}^{2}} u_{i j}^{k+1}=F_{i j}, \tag{28}\\
& F_{i j}=-\frac{2 \sigma}{h_{1}^{2}}\left[u_{i-1, j}^{k}-2 u_{i j}^{k}+u_{i+1, j}^{k}\right]+\frac{1}{h_{1}^{2}}\left(u_{i-1, j}^{k}-2 u_{i j}^{k}+u_{i+1, j}^{k}\right)+\frac{\sigma}{h_{1}^{2}}\left(u_{i-1, j}^{k-1}-2 u_{i j}^{k-1}+u_{i+1, j}^{k-1}\right) \\
& \quad+\frac{1}{h_{2}^{2}}\left(u_{i, j-1}^{k}-2 u_{i j}^{k}+u_{i, j+1}^{k}\right)+\left\{f_{0} u_{i j}^{3}+f_{1} u_{i j}^{2}+f_{2} u_{i j}+f_{3}\right\}_{i j}^{k} .
\end{align*}
$$

The schemes (26), (27), (28), (29) are absolutely stable and convergent. The accuracy of this schemes is $O\left(h^{2}\right)$ and is proved as in Komurjishvili (2007).

CONCLUSION

1. In 3D there exists the bounded solution of the problem (1),(2), which is given by the formulas (16),(17), (18).
2. It is clear from (9), (10), that if φ depends only on time, then r does not depend on time.
3. In 1D case solutions of (1),(2) of the type $\Psi=r e^{i\left(A_{0} t+D\right)}$ exist only at some interval :
I) For $\lambda \geq 0 ; 0 \leq-k_{1} x+r_{0} \leq K^{\prime}$; and has singularity at the point K^{\prime};
II) For $\lambda \leq 0 ; 0 \leq-k_{1} x+r_{0} \leq K$,
where $k_{1} ; r_{0} ; K ; K^{\prime}$ are definite constants.

ACKNOWLEDGEMENTS

The designated project has been fulfilled by financial support of the Georgia Rustaveli Scientific Foundation (Grant
\#GNSF/ST08/3-395).

Research Article

REFERENCES

Alexandrov AL, Bogdankevich and Rukhadze A(1984). Principles of Plasma Electrodynamics, Springer, Heidelberg, Germany.
Anderson BJ and Hamilton DC(1993). Electromagnetic ion cyclotron waves stimulated by modest magnetospheric compressions, Journal of Geophysical Research., 11(98) 369-382.
Auletta G, Fortunato M and Parisi G (2009). Quantum Mechanics, Cambridge University Press.
Bourgan J and Wang W. (1998). Construction of bluwup solutions for the nonlinear Schrödinger equation with critical nonlinearity. Annali Della Scuola Normale Superiore Di Pisa (Cilasse di Science) 4(25), 197-215.
Cazenave Th and Wiessler F (1989). Some remarks on the nonlinear Schrödinger equation in the critical case. In: Nonlinear semigroups, partial differential equations and attractors (Washington, DC, 1987), Lecture Notes in Mathematics, 1394, Berlin: Springer, 18-29.

Courant R and Hurwitz A (1929). Vorlesungen Äuber allgemeine Funktionentheorie und elliptische Funktionen. Springer, Berlin,.
Courant \mathbf{R} and Hilbert \mathbf{D} (1989). Methods of Mathematical Physics, Wiley, $N Y$,.
Ginibre J and Velo G (1979). On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case. Journal of Functional Analysis, 32(1) 1-32.
Gurevich AV and Shvartsburg AB (1973). Nonlinear Theory of RadioWave Propagation in the Ionosphere, Science, Moscow.
Hasegawa and Matsumoto M (2002). Optical Solitons in Fibers, Third ed., Springer Series in Photonics 9, Springer, Berlin.
Komurjishvili O (2007). Finite difference schemes for multi-dimensional equations and systems of hyperbolic type equations. Journal Wichislitelnoi Matematiki i Matematicheskoi Fiziki, 476 980-987 (Russian).
Kwong MK. (1989).Uniqueness of positive solutions of $\Delta u-u+u^{p}=0$ in R^{n}. Archive Rational Mechanics and Analysis, 105(3), 243-266.
Landau LD and Lifshitz EM (1977). Quantum Mechanics, Pergamon Press, Oxford, 1977.
Laptev A, Naboko S and Safronov O (2005). Absolutely continuous spectrum of Schrödinger operators with slowly decaying and oscillating potentials, Communications in Mathematical Physics, 253(3) 611631.

Lions JL (1969). Qualques methodes de resolution des problemes aux resolution des problems aux limites non lineares, Paris.
Merle F (1990). Construction of solutions with exact k blow up points for the Schrödinger equation with critical power. Communications in Mathematical Physics, 129 223-240.
Merle F and Raphael (2005). Profiles and Quantization of the Blow Up Mass for Critical Nonlinear Schrödinger Equation, Communications in Mathematical Physics, 253(3), 675-704.
Perelman \mathbf{G} (2001). On the blow up phenomenon for the critical nonlinear Schrödinger equation in ID. Ann. Henri. Poincare 2, 605-673.
Safronov O (2004). On the absolutely vontinous spectrum of multi-dimensional Schrödinger operators with slowly decaying potentials. Communications in Mathematical Physics, 153(3) 161-168.
Simon B (1997). Some Schrödinger operators with dense point spectrum. Proceedings of American Mathematical Society, 125, 203-208.
Simon B (2000). Schrödinger operators in the twenties centhery. Journal of Mathematical Physics, 41, 3523-3555.
Sulem C and Sulem Pl (1999), The nonlinear Schrödinger equation. Self-focusing and wave collapse. Applied mathematical sciences 139, New York: Springer- Verlag.
Summers DR, Thorne M and Xiao F. (1998). Relativistic theory of wave particle resonant diffusion with application to electron acceleration in the magnetosphere, Journal of Geophysical Research, 20(103) 487-500.

Research Article

Tsintsadze NL, Kaladze TD, Van Dam J, Horton W, Fu XR and Garner T W (2010). Nonlinear dynamics of the electromagnetic ion cyclotron structures in the inner magnetosphere. Journal of Geophysical Research, 115, A07204, 1-7.
Weinstein M (1989). The nonlinear Schrödinger equation singularity formation, stability. Dispersion, Contemporary Mathematics, Providence, RI: Amer., Math. Soc. 99, 213-232.
Whitham GB (1974). Linear and nonlinear waves, JOHN Wiley-SONS.
Zakharov V and Shabat A (1972). Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Soviet Physics, 34 62-69.

