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ABSTRACT  
The 3D non-linear Schrödinger type Equation with the appropriate initial-boundary conditions is 
considered. By introducing a new functions the equation is reduced to the system of partial differential 
equations.In some cases the effective solutions are obtained. The approximate solution is constructed by 
means of explicit finite-difference schemes. 
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INTRODUCTION  
Schrodinger Equation describes various physical phenomena. Linear Schrödinger Equation Describes 
quantum processes and in some special cases the effective solutions are obtained (see for example Auletta 
et. al(2009), Landau and Lifshitz (1977), Simon (2000)). 
Non-linear Schrodinger type equation describes electron plasmic waves, waves in ultraconducted fluid, 
electromagnetic ion cyclotron waves with sufficiently large amplitude, waves in cosmic gases, etc., 
Alexandrov et. al (1984), Anderson and Hamilton (1993), Gurevich and Shvartsburg (1973), Hasegava 
and Matsumoto (2002), Lions (1969), Summers et. al (1998), Tsintsadze et. al (2010) , Sulem (1999) , 
Simon (2000), Whitham (1974), Zakharov and Shabat (1972). 
Numerous works are devoted to the spectral properties of Schrödinger operator: Cazenave and Weissler 
(1989), Ginibre and Velo (1979), Kwong (1989),Weinstein (1989), Simon (1997),Sulem (1999), Laptev 
et. al (2005), Safronov (2004),.  Blow –up solutions in time of critical non-linear Schrodinger equation 
were studied by  Merle (1990), Merle and Raphael (2005), Perelman (2001), Bourgain and Wang (1998). 
Here we consider non-linear Schrödinger equation in 3R  and some parallelepiped. By introducing a new 
functions the equation is reduced to the system of partial differential equations, which is more convenient 
for investigation. The bounded solutions in 3R  are constructed. In 1D the solutions with singularities are 
fond at some interval . In 2D parallelepiped the approximate solution is constructed by means of explicit 
finite-difference schemes . 
SETTING OF THE PROBLEM  
In 3D space let us choose the coordinate system Oxyz  and consider some area 0G .We admit that   

3
0 RG   or 0G  is a parallelepiped  ,0,0,0 0000 czbyaxG   where 000 ,, cba are the 

definite constants. 
In the area  ,00 TtGQT   we  consider the following Schrödinger's type Equation  

,02 

 
t

i                                                      (1) 

with the initial condition 
;),,( 0000 iVUzyxt                                              (2) 

and with the boundary condition (if 0G  is bounded) 

,00
CG    
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where   is a wave function,  ,iVU   is  some parameter, 0 is the given continuous functions, 

0C is a constant, 0G  is a  boundary of  0G  . 
The Cauchy problem (1), (2) is locally well-posed (Lions (1969), Cazenave and Weissler (1989).Ginibre 
and Velo (1979)). 
CONSTRUCTION OF THE SOLUTIONS 
The equation (1) is equivalent to the following system of partial differential equations 
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Let us introduce the notations 
,sin;cos  rVrU   

Taking into the account (4) the system (3) becomes 
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After simple transformations from (5), (6) we obtain 
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Let u rewrite (7), (8) in the form 
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Let us consider some particular  cases: 
1. Suppose 

,),,(;),,( 0100
0 tAeDzyxezyxrr tt                                   (11) 
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where 0100 ;;;; DAC  are some constants , 00 ;r  are the functions to be determined. 
Putting (11) into (9), (10) we obtain                         
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2. In case of constrr  0;0   from (12), (13) we obtain 
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and effective solution of  (14) will be given by (Courant and Hilbert (1989)) 
,10111 DtAzCyBxA                                               (15) 

where  
;2

00
2
1

2
1

2
1 rACBA                                                     (16) 

Consequently, the solution of the system (3) is of the form 
)cos( 101110 DtAzCyBxArU  ,                                     (17) 

)sin( 101110 DtAzCyBxArV  ,                                       (18) 
where   

0111 ,, ACBA are the constants connected with the condition (16).  

The solutins (16), (17) are bounded in 3R  and satisfies the following initial conditions 
,0);cos( 11110  tDzCyBxArU  

.0);sin( 11110  tDzCyBxArV  

It is obvious 2
0

22 rVU  . The graphs of (17) and (18) are plotted by means of the computer program 
Maple and are given in the figures Fig.1 and 

F  
Fig 1: Profile of U in the case .1;1;2;1 01111 0

 tzrDACBA  
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Fig 2: Profile of V in the case .1;1;2;1 01111 0

 tzrDACBA  
 
 
3. Now, let us suppose  

,),,(; 0100
0 tAeDzyxerr tt    constrr  0 , 

than the system (12), (13) becomes 
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  0 ;                                                   (20) 

The solution of this system exists only in the case ;0;0; 0001
2

0  ADr   and is given by (15), 
(16). 
In case of 0;2;2; 0001

2
0  ADr  ; ,10

2
1

2
1

2
1 DtAzAyAxA   the system (19), 

(20) is satisfied only at  the sphere .)( 0
222

1 AzyxA   
 
4. In case of 10 DtA  , r does not depend on time and (12) implies  

rArr 0
3   .                                                        (21) 

Here 0; rr  and the unique solution of this type exists Kwong (1989). 
 
In the case, when r  depends only on one variable x , the equation (21) could be reduced to the following 
differential equation 
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The solution of the equation (22) will be given in the implicit form by the formula 
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(23) is the elliptic integral with the modulus k. Inversion of this integral is the Jakobi sinus and is given 
by Courant and Hurvitz (1929) 

;
2

);( 1011 k
krxksnrr 
                                             (24) 

As we seak for real solution, we will consider the following cases:   

   1. 0 ; ;'0 01 Krxk                      



k

tkt
dtK

1

1
222 )1)(1(

' . 

Solutions of this type has singularity at the point ;'K  

2.  0 ; Krxk  010                       



1

0
222 )1)(1( tkt

dtK  

In the case of 2  variables the numerical solution of the equation (21) will be given by the explicit finite-
difference schemes. In this case we consider the eqaution (15) at some rectangular area 0G  with the  
boundary conditions 

;00
constrr G        

where 0G  is a boundary of the area      000 0,0 byaxG  . 
Let us introduce the notation  0rru   and rewrite (21) in the form  

32
2

1
3

0 fufufufu  ,  ,0
0
Gu              (25)  

where 00
3

0302010 ;3;3; rArfAfrff   . 

The area of integration 0G  we divide by the planes ;,...,1,0;,...,2,1,0;; 21 NjMijhyihx ji    into 

cells, where ;/;/ 0201 NbhMah    
Consequently, for the area 0G   we introduce the following grids  

 ;,...,1,0;,...,2,1,0;; 21 NjMijhyihx jih   
For net functions and their difference derivatives we introduce the following notations 
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For the problem (25) we have constructed the following finite-difference schemes  
fuuu xxxxtt 
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2  ,                                                 (26) 

32
2

1
3

0 fufufuff  , 

k
ij

k
xx

k
xx

kk

fufufufuuuu )(2
32

2
1

3
02

11

11
2

2212








 ,                  (27) 

ij

k
ji

k
ij

k
ji

k
ji

k
ij

k
ji

k
ji

k
ij

k
ji

h
uuu

h
uuu

h
uuu












 




















2
1

1
,1

11
,1

2
1

,1,1
2
1

1
,1

11
,1 22

2
2

, 

  ij
k
ij

k
ji

k
ji Fu

h
uu

h
 





1
2

1

1
,1

1
,12

1

2 
  ,                                         (28) 

     1
,1

11
,12

1
,1,12

1
,1,12

1

22122 



  k

ji
k
ij

k
ji

k
ji

k
ij

k
ji

k
ji

k
ij

k
jiij uuu

h
uuu

h
uuu

h
F 

 

          k

ijijijij
k

ji
k
ij

k
ji fufufufuuu

h 32
2

1
3

01,1,2
2

21
  .                             (29) 

The schemes (26), (27), (28), (29) are absolutely stable and convergent. The accuracy of this schemes is 
)( 2hO and is proved as in Komurjishvili (2007). 

 
CONCLUSION 
1. In 3D there exists the bounded solution of the problem (1),(2), which is given by the formulas 
(16),(17), (18). 
2. It is clear from (9), (10), that if  depends only on time, then r does not depend on time. 

3. In 1D case solutions of (1),(2) of the type )( 0 DtAire  exist only at some interval : 
I) For 0 ; ;'0 01 Krxk  and has singularity at the point  ;'K  
       II) For 0 ; Krxk  010 , 
       where ';;; 01 KKrk  are definite constants. 
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