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ABSTRACT

In this paper we have considered the general heat equation to study heat transform for a suitable
f with the help of source solution. The inversion of the integral equation (3.4), and then deduced
the inversion of the heat transform (3.1). Finally operational calculus is developed and some
special cases are studied.
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1. INTRODUCTION: The general heat equation is defined as

%u 4a ou d? __Ou
et T 2% (1.1)
Or
ou 02 4a 0 d?

where 2a is a fixed positive number and d is a fixed number. If 2a = d = 0, then (1.1) reduces
to the ordinary heat equation
0*u _ du
ox? ot '’
where u(x, t) is regarded as the temperature at a point x at time ¢, in an infinite insulated rod
extended along the x —axis in the xt —plane . If we set a = i then (1.1) becomes
O°F  O°F _ OF
ox? 0dy? adt '
the heat equation in two dimensions, where the solutions are of the type
F(x,y,t) = u(r,t)sindd

in polar coordinates ; and represents the temperature in a plane sector of angle 7z /d.
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Further, if we put a :§ and d? = n(n+ 1), then (1.1), yields the heat equation in three

dimensions
0°F 0°F aZF_aF

+ + —
d0x? dy? 0z% Ot

where the solutions are of the form

F(x,y,z;t) =u(r,t) B, (cos¢)
in spherical coordinates representing the temperature in a cone of angle ¢. Here B,(Z) are the
Legendre polynomials. Consequently the heat equation (1.1) can be regarded as representing a
general situation for the flow of heat.

The object of this paper is to study the analytic consequences of the general heat
equation. We shall devote our main effort towards establishing some properties of the source
solution and an algorithm for the inversion of the heat transform. The case d = 0 has been dealt
with thoroughly in Haimo and Cholewinski[1966].

2. THE SOURCE SOLUTION:
Consider the temperature at x = p, as instantaneously enormous at ¢t = 0* but leveling off
rapidly. Thus there is a source at x = p; and the temperature function is now defined as the

source solution. To find the source solution u(p, x, t) of (1.1), we consider the equation
2 2
S+l Su=2 5(x—p)8(t) (2.1)

where 6 is the Dirac delta function. If

[0¢]

u= f u(x, t) e st dt,
0

then (2.1) gives,
62_ﬁ+ 4—a@—d—zﬁ:sﬁ+5(x—p).
0x?> x Ox x?
The solution is
_ {p3a+b 2@ K, (s9Fp) I,_g(s7*Fx), x <p
platb x=(@-D)[ . (sa+bp)K,_s(s%*Fx), x>p
and by the inverse Laplace transform, Erdelyi ETAL[1954, p.284],

U=Upxt)=p*Gup(px;t), (2.2)
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where

px

1
Gap (0. x;t) = o7 (px)~(@-D) e_(p2+x2)/4t1a_ﬁ (E

) =G(px;t),
say, and
(a—pB)* = (a—b)?+d? (a—p) > -1, t>0.
We shall call the function U to be the source solution of the general heat equation (1.1) and for
the simplicity we shall say that
U(p,x;t) €H. (2.3)
Further we shall discuss some of the more interesting properties of the source solution and in

particular, the so-called Green’s function G (p, x; t). We note that

[0¢]

G(p,x;t) = (px)~(a=) f ue™ J,_p(pu) Jo—p(xu) du,

0
where (@ — ) > —1, t > 0, Erdelyi ET AL[1954,p.51]. As a direct result of the definition of

the function U(p, x; t), we have the following theorem.
Theorem 2.1: Let U(p, x; t) be defined as above. Then
M U@,x;t)>0 p, x>0,

(i) UGp, Ax; 22t) = U(p, x;1),

(iii)x 2@~ U (p, x;t) = p2(@= D1 U(x,p;t).
Theorem 2.2: Let U(p, x; t) be as defined above. Then
0 [ p* U, x;t) dp = x*

1
(iDIU(p,s; )] < AQE)"@P|p|*70*2 (07 +72) 7@ (o= 4eD)/at (2.4)

wheres=oc+it, 0 >0, —0 <7 < 00,

-k . _1 a—b+x 2 2y-a ,~{(c-p)2+12/4t b-a+a-p Vo2+12 P
(iil) | = U, s; )| < Bt [pl*"*E (62 + 2?) e e e 2) 0 (25)

a-b+=
W) | U x| sce3/2 (B) 7 eoa ((a +3p) + 220, (2.6)
Proof: Conclusion (i) follows by direct computation. From the definition given in (2.2) and the
asymptotic behavior

I, ;.1 (2) ~(1/\/27‘[Z) e? , we have

2
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2(a-b)+1 ) ) ( ) 2)/ ps
. — —(a-b —(p“+s 4t =
U(p,s;t) 55— ®s) e Io_p (21:)’
and it follows that

1
[U(p, s;t)| < AQRt)™Y2 |p|*2*2 (62 + 72)2 e~{(0-p)*+7*/4t.
Also,

0 0 pZ(a—b)+1 ps
. . - _ )= —(a-b) —(p2+sz)/4t Las
55 UPsit) = 5 { op  (ps) e s (32)

3a+b+a-f —(a-B)
P s O | mambyranp g-s?/ar (ﬁ) T (
(2t)3a+B ds 2t a-p

— 1 _3a+4b ,—(p%+s2)/4t _p_ —(3a+b) bsy _
= 5 P e i (@ — p—a b) sTEUDp (5)

sa+302t la—f ps2t+ p2t s—a—b Ba+f ps2¢

Lt
(Zt)% (s)

2 —(p-s)/at [ a4 h) DS ﬂ]
¢ (@=f—a+b) S+op+oy

Thus

1
|ll—b+§

ad Ip
—U(ps;t)| < —
as (Zt)%

proving the assertion (iii). To prove the assertion (iv), by direct computation, we have

(6% +12)@ e~ ((a=p)?+1?) /4t a-p-a+b Ny P
W Zt Zt L]

d 1 px
— U(p,x;t) = yrel Ulp,x;t) (x2 +p? — 4t + 4(a — p)t?) — 5z U_(a+3p) (D, x; 1)

ot
hence
1
d 3 p\abt3 2 (p —x)?
_ . Ll —(p—x)</4t ) _ LA
e vo] se 3 Q7 o frap e C70
as required

Theorem 2.3: If0<x <o , 0<y <o and 0 <t; <t, then
M, Upxit) 6, y:i)dp = G(x,y; t; +t5),
(i) fooo U(p,ix; t,) G(@ip, y; t;) = (-1)*G(x,y; t, — t;)
where
k=a—-p—(a—>b)and (a —p) > -1

)
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Proof: By using the estimates derived in the last theorem it is easy to show that the integrals in
the assertions (i) and (ii) above exist. Now by direct evaluation Erdelyi ET AL[1954, p.197].

[0¢]

f Up,x; t1) G(p,y; t;)dp

0

[0¢]

(a2 2 px PY\ -p?(L+l)/a
e~ (x2/t1+y?/t;)/4 fla—ﬁ <2_t1) Io_g <2_t2) e (t1 tz) pdp

B (xy)—(a—b)

4t t,
0

- ﬁ (xy)~(@) o=(*+y2)/4 vt (ﬁ)
=G(x,y; t; +t,)
as required. Also, the assertion (ii) can similarly be established. Note that assertion (ii) can be
considered as the inversion of the integral equation in (i).
3. THE HEAT TRANSFORM:
If we now consider the source solution U as the Kernel, then for a suitable £, its heat transform F

is defined by

2K F(x,t) = [ Ulp,x;t) p*f (p)dp (3.1)
wherek=a—-pf—(a—b), (a—p)*= (a—b)?+d?and (a —p) > —1.
Theorem 3.1: If f(x) is bounded and continuous in 0 < x < oo, and has a heat transform
F(x,t), thenx* F(x,t) € H, t>0,wherek=a—-f—(a—b), (a—p) > —1.
Proof: From (3.1) above,

Ixk FQx, )] <A [ U(p,x;t) p*dp

1 —(a—b+1) ( 2
< Bt Zx 2 f pa—b+k e—(p—x) /At dp < o,

0

using the estimate (2.4), where A =u.b.f(x), 0 <x < . Hence the integral defining the

function F exists and is in fact absolutely convergent. Now

[0¢]

f U(p,x;t) p* f(p) dp

0

Ay [x* F(x, )] = A,

[0¢]

= fo [U(p, x; )] p* f(p) dp

0

197



International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online)

An Online International Journal Available at http://www.cibtech.org/jpms.htm
2012 Vol. 2 (1) January-March, pp.193-205/Waphare

Research Article

[0¢]

d
= f& U(p,x;t) p* f(p)dp

[0¢]

)
= — | Ul,x;t)p* f(p)dp

Jt

0

0
== [x* F(x, )],

proving that x* F(x, t) satisfies the heat equation (1.1), hence x* F(x,t) € H, provided one can

justify interchanging the operators A, and % with the integral sign. Now, using (2.6), we have

[0¢]

0

Y
fo [U(p,x; O] p* f(p) dp = Hﬁ [U(p, x; O] p* f(p)| dp

k+a—b+s —(p—x)?/4t
<A(xt) | p Ze If(p)| dp
0

kta-b+i _ 2 /8t
<B(xt) | p ze P /8| f(p)ldp < oo,
0

forall x > 0 and t > 0, and making use of the fact that

1

(p_x)z > _pZ_xZ

2

hence
e—(p—x)2/4t < e—p2/8t+x2/4t ’

giving us the desired justification.
Theorem 3.2: If f(x) is bounded and continuous in 0 < x < oo, then

(i) s* F(s,t) = [ U(p,s;t) p* f(p) dp,
s=o+it, c>0, —oco<T<o00, and
(i) s* F(s, t) is analytic in the complex half plane Res > 0.

Proof:

[0¢]

sk F(s,t)] < flU(p,s;t) p* f(p)| dp

0

(3.2)
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1
SA (O',T, t) fpk+a—b+§e—(p—o')2/4t |f(p)|dp < oo,
0

due to (2.4). Hence the function s* F(s,t)exists and is defined by a uniformly convergent
integral forc > 0and t > 0.

To prove that s* F(s, t) is analytic in the complex half plane o > 0, we need to show that

[0¢]

)
f% U(p,s;t) p* f(p) dp

0

converges uniformly. Now, using (2.5) we have
oo a oo ) 1
| |55 v@.si00* r@)| o < Blore) [ poratt et-or s 1)l ap
0 0

which converges uniformly for all ¢ > 0 and t > O as seen above.

Hence the theorem is proved.

Corollary8:|skF(s, t)| < C (6% + t2)? e~(0*+7%)/4t (3.3)
Theorem 3.3: Let F(x, t) be as defined above. Then
xKFlx,t+1t) = fooo U(p,x;t) p* F(p, t,) dp (3.4)

for a fixed t; > 0.

Proof: It is easy to see that the integral in (3.4) exists.

Now,
fU(p,x; t) p* F(p,ty) dp = fU(p,x; t)dp f U(y,p;t1) y* fF(y)dy

= [ v roay [ ve.x0 vG.pie) ap

0

[0¢]

0

f yk+2(a-b)+1 £(y) dy f U@,x;t)G(yp;t)dp
0 0
of
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[0¢]

= fu(y,x;t+t1)y"f(y)dy

0

= x*F(x, t +ty),
making use of the result of Theorem 2.3 and the equation (3.1).
The change of order of integration in the above analysis is justified due to absolute convergence.
Thus equation (3.4) is proved.
Corollary: If t; — 0, then (3.4) yields the heat transform (3.1), formally.
4. The inversion:
In this section we shall find the inversion of the integral equation (3.4), and then deduce the
inversion of the heat transform (3.1).
Theorem 4.1: Let F(x, t) be defined as above. If

[0¢]

xkF(x t+t,) = f U(p,x;t) p* F(p,t,) dp,

0
then

k
xk F(x,t)) = fooo U(p,ix;t) (g) F(ip,t + t;)dp (4.1)

where t,t; >0, a=b>0—=> , (¢—p)>—1 and k=a—pf - (a—b).
Proof: Now form (3.4),

[0¢]

(ix)* F(ix.t +t,) = f Up. ix: £) p* F(p, t,) dp,

0

or simplifying,

1 [ x
aa_b”‘F(ix, t+ tl) — Z f p3a+b+k e_(pz_xz)/4-t ]a—ﬁ (Z_t) F(p, tl) dp
0

If we put x = 2ty, then above equation gives,

(2t)k+3a+b yk+a—b+% o—Y2t FGi2ty,t +t,)
[ k+a—b+1 2
- f 0y)**F Jop0y) P 2F(p,ty) eP/* e dp
0
which is the usual form of the Hankel type transform, and therefore on inverting gives
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yk+a—b+% e_y2/4_t F(y, tl)
1
= f(py)aﬂ? ]a—B(py) (zt)k+3a+b e—pzt F(iztp, t+ tl) pk+a_b+i dp.
0

Again, let v = 2tp, and simplify to get

[0¢]

yEF(y, t)) = f U(v,iy;t) (g)k F(iv,t +t;) dv.

0

Corollary 1: (3.4) can alternatively be written as 4.2)
jco

y F(y, t)) = f U(x,y,—t) x* F(x,t + t;) dx

0

Corollary 2: Let t; —» 0. Then
tlirrl) F(x,t;) = f(x)
and the pair of heat transforms (3.4) and (3.5) reduce to respectively,
xKFQt) = [ U@, x;t) p* £(p) dp (4.3)

and

x* f(x) = fooo U(p,ix;t) (%)k F(ix,t) dp (4.9)
formally.
5. Operational calculus:
By Taylor series expansion, we have

n

WK FQut+1t,) = x* itn (i) [F (e, )] e,

n! \ou
n=0
—t" A"
— L K
B Zn! <6u> bt £ s,
n=0
Since x* F(x,t) € H,thatis
k = i k = i 4_a i_ﬁ
A, [x* F(x, t)] = ~ [x* F(x,t)], A, = R eie?

Thus from above, we have
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(o] tn
FFQre+) = ) — ()" [ Fx6)]
~ n:
= pthx [x* F(x,tl)].
The heat transform (3.4), can now be written symbolically as,
etx[xk F(x,t)] = x* F(x, t +t,),

where

[0¢]

et [p(x)] = f U, x;0) p(p)dp.

0

Therefore the inversion of (5.1) is then
xk F(x,t)) = e =[xk F(x,t + ty)],

where from (4.2),

e=thx [p(x)] = f U(p, x; —t) $(p)dp.

0

In particular if we let t; — O, then formally, (5.1) and (5.2) reduce to the pair
ex[xkf(x)] = x* F(x,t)
and
x* f(x) = et [xk F(x, )],
respectively, giving us a pair of heat transforms in operator form.
Example 1: Let
flx) = x@ bk, _o(x).
Then its heat transform is (see Waphare[2012]),

F(x,t) = et x~(a-b)-k Iy_p(x) (a —p) > -1
Now,
e~ thx[xk F(x,t)] = e tx [ef x~(a=D) Ia_ﬁ(x)]
= et g~ thx [x—(a—b) Ia—ﬁ (x)]
= Z(_nt!) (A" [x7@) [y _p(x)].
But

(5.1)

(5.2)

(5.3)

(5.4)
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A, [x‘(a‘b) Iy_p (x)] = x~(a-b) Iy—p(x),

hence
(A" [x_(a‘b)la_ﬁ(x)] = yx—(a-b) Ia—ﬁ(x)a n=012 .
and
[e's) _t n
e x [xk F(x,t)] = et Z u x~@=b) 1, g(x)
n!
n=0
where = x7(@ B [, _p(x) = x* f(x) say,
flx)= x@ Dk _p(x),
as required.

Example 2: Let

F(x,t) =1
Then
xk f(x) = et [xk] = Z(_nt!) (A" [x¥]
Now,

= (k(k — 1) + 4ak — d?) x¥*~2

=0,
sincek =a—f —(a—>b) and (a — B)?> = (a — b)? + d?. Therefore

A" [x*1=0, n=123 ......
and
x* f(x) = x*,
so that
f(x) =1

Thus f(x) =1 and F(x,t) =1 gives us a pair of heat transforms which can be verified by

evaluating the integrals (4.3) and (4.4).
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6. Special Cases:
Let d = 0. The general heat equation (1.1) reduces to
0*u 4a du _ Ou

+— = = 1
d0x? x Ox Ot
which has the solution, from (2.3) as
U(p,x;t) = p?@D+1ig ., (p,x;t).
The heat transform (3.1) is then

F(x,t) = f p** Ga_p (p,x;t) f(p) dp,

called the Poisson-Hankel transform, and its inversion is given by
f(x) = fooo p** G,y (p,ix; t) F(ip, t)dp, (See [5]).
Ifweletd =a—b +% =0, a—-p= —i then (1.1) reduces to

0*u _ du
dx2 ot '
the ordinary heat equation, whose source solution is

1 2 px
1 - —( +x )/4
U(p X, t)— G_ (p X, t)— \/_t p tCOS|I(2t)

Also form (4.3) and (4.4), we have

F(x,t) = — f e~ (P?+x?)/4t cosh( ) f(p)dp ,
and
f(x) = — f e (P?+x?)/4t cogh (2 ) F(p, t)dp.
Simbolically, the operator
2

then (5.3) and (5.4) yield
F(x,t) = e®’[f(x)]
fx) = e™t" [F(x,t)]
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which gives the Eddington solution of the ordinary heat equation (see Sneddon [4,p.85]).
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