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ABSTRACT 
In this paper we have considered the general heat equation to study heat transform for a suitable 
푓 with the help of source solution. The inversion of the integral equation (3.4), and then deduced 
the inversion of the heat transform (3.1). Finally operational calculus is developed and some 
special cases are studied. 
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1. INTRODUCTION: The general heat equation is defined as  

                                                               +   −  푢 =                                                     (1.1)                                                

Or 

∆ 푢 =  
휕푢
휕푡   ,∆  ≡  

휕
휕푥 +

4푎
푥  

휕
휕푥 −  

푑
푥  

 

where 2푎 is a fixed positive number and 푑 is a fixed number. If 2푎 = 푑 = 0, then (1.1) reduces 

to the ordinary heat equation 

휕 푢
휕푥 =  

휕푢
휕푡      , 

where 푢(푥, 푡) is regarded as the temperature at a point 푥 at time 푡, in an infinite insulated rod 

extended along the 푥 −axis in the 푥푡 −plane . If we set 푎 =  then (1.1) becomes 

휕 퐹
휕푥 +  

휕 퐹
휕푦 =  

휕퐹
휕푡     , 

the heat equation in two dimensions, where the solutions are of the type 

퐹(푥, 푦, 푡) = 푢(푟, 푡)푠푖푛푑휃 

in polar coordinates ; and represents the temperature in a plane sector of angle 휋 푑.⁄  
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Further, if we put 푎 =  and 푑 = 푛(푛 + 1), then (1.1), yields the heat equation in three 

dimensions 

휕 퐹
휕푥 +  

휕 퐹
휕푦 +

휕 퐹
휕푧 =  

휕퐹
휕푡  

where the solutions are of the form 

퐹(푥, 푦, 푧; 푡) = 푢(푟, 푡) 푃  (cos휙) 

in spherical coordinates representing the temperature in a cone of angle 휙. Here 푃 (푍) are the 

Legendre polynomials. Consequently the heat equation (1.1) can be regarded as representing a 

general situation for the flow of heat. 

 The object of this paper is to study the analytic consequences of the general heat 

equation. We shall devote our main effort towards establishing some properties of the source 

solution and an algorithm for the inversion of the heat transform. The case 푑 = 0 has been dealt 

with thoroughly in 퐻푎푖푚표 푎푛푑 퐶ℎ표푙푒푤푖푛푠푘푖[1966]. 

2. THE SOURCE SOLUTION:  

Consider the temperature at 푥 = 푝, as instantaneously enormous at 푡 = 0  but leveling off 

rapidly. Thus there is a source at 푥 = 푝; and the temperature function is now defined as the 

source solution. To find the source solution 푢(푝,푥, 푡) of (1.1), we consider the equation 

                                             +   −  푢 = −  훿(푥 − 푝) 훿(푡)                                       (2.1) 

where 훿 is the Dirac delta function. If 

푢 =  푢(푥, 푡) 푒  푑푡, 

then (2.1) gives, 

휕 푢
휕푥 +  

4푎
푥  
휕푢
휕푥 −

푑
푥  푢 = 푠푢 + 훿(푥 − 푝). 

The solution is  

푢 =  
푝  푥 ( ) 퐾  푠 푝  퐼 푠 푥 ,   푥 < 푝
푝  푥 ( )퐼  푠 푝 퐾 푠 푥 ,   푥 > 푝

 

and by the inverse Laplace transform, 퐸푟푑푒푙푦푖 퐸푇퐴퐿[1954, 푝. 284], 

                                                 푈 ≡ 푈(푝,푥, 푡) =  푝  퐺  (푝,푥; 푡),                                         (2.2) 
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where 

퐺  (푝, 푥; 푡) =  
1
2푡  (푝푥) ( ) 푒 ⁄ 퐼  

푝푥
2푡 = 퐺(푝,푥; 푡), 

say, and  

(훼 − 훽) =  (푎 − 푏) + 푑 , (훼 − 훽) > −1, 푡 > 0. 

We shall call the function 푈 to be the source solution of the general heat equation (1.1) and for 

the simplicity we shall say that 

                                                                         푈(푝, 푥; 푡)  ∈ 퐻.                                                           (2.3) 

Further we shall discuss some of the more interesting properties of the source solution and in 

particular, the so-called Green’s function 퐺(푝, 푥; 푡). We note that 

퐺(푝, 푥; 푡) =  (푝푥) ( )  푢 푒  퐽 (푝푢) 퐽 (푥푢) 푑푢, 

where (훼 − 훽) > −1, 푡 > 0,  Erdelyi ET AL[1954,푝. 51].  As a direct result of the definition of 

the function 푈(푝, 푥; 푡), we have the following theorem. 

Theorem 2.1: Let 푈(푝, 푥; 푡) be defined as above. Then 

(i) 푈(푝, 푥; 푡) > 0,     푝, 푥 > 0, 

(ii) 푈(휆푝, 휆푥;  휆 푡) = 푈(푝, 푥; 푡), 

(iii)푥 ( )  푈(푝, 푥; 푡) =  푝 ( )  푈(푥,푝; 푡). 

Theorem 2.2: Let 푈(푝, 푥; 푡) be as defined above. Then 

(i) ∫ 푝  푈(푝, 푥; 푡) 푑푝 =  푥    ,  

(ii)|푈(푝, 푠; 푡)|  ≤ 퐴(2푡) ( )|푝|  (휎 + 휏 )  푒 ( ) ⁄  ,                                 (2.4) 

where 푠 = 휎 + 푖휏, 휎 > 0  , −∞ < 휏 < ∞, 

(iii)  푈(푝, 푠; 푡)  ≤ 퐵 푡  |푝|  (휎 + 휏 )  푒 ( ) ⁄  
√

+  √ +  ,     (2.5) 

(iv)  푈(휉,푥; 푡)  ≤ 퐶 푡 ⁄   푒 ( ) ⁄  – (훼 + 3훽) + ( ) .                         (2.6) 

Proof: Conclusion (i) follows by direct computation. From the definition given in (2.2) and the 

asymptotic behavior 

퐼  (푧) ~ 1 √2휋푧⁄  푒  , we have 
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푈(푝, 푠; 푡) =  
푝 ( )

2푡  (푝푠) ( ) 푒 ⁄  퐼
푝푠
2푡 , 

and it follows that 

|푈(푝, 푠; 푡)|  ≤ 퐴(2푡) ⁄  |푝|  (휎 + 휏 )  푒 ( ) ⁄ .  

Also, 

                  
휕
휕푠  푈(푝, 푠; 푡) =  

휕
휕푠  

푝 ( )

2푡  (푝푠) ( ) 푒 ⁄  퐼
푝푠
2푡  

                                          =  
푝
(2푡)  푒 ⁄  

휕
휕푠  푠 ( )  푒 ⁄ 푝푠

2푡

( )
 퐼

푝푠
2푡  

                                          =   푝  푒 ⁄ (훼 − 훽 − 푎 + 푏) 푠 ( )퐼  −

                                               푠푎+3푏2푡 퐼훼−훽 푝푠2푡+ 푝2푡 푠−푎−푏 퐼3훼+훽 푝푠2푡   

                        ~ 
1

(2푡)
 
푝
푠  푒 ( )⁄  (훼 − 훽 − 푎 + 푏) 

1
푠 +

푠
2푡 +

푝
2푡  

Thus 

 푈(푝, 푠; 푡)  ≤  | |

( )
 (휎 + 휏 )  푒 ( ) ⁄  

√
+  √ +   , 

proving the assertion (iii). To prove the assertion (iv), by direct computation, we have 

휕
휕푡  푈(푝,푥; 푡) =  

1
4푡  푈(푝,푥; 푡) (푥 + 푝 − 4푡 + 4(훼 − 훽)푡 )−

푝푥
2푡  푈 ( )(푝, 푥; 푡) 

hence 

휕
휕푡  푈(푝,푥; 푡)  ≤ ⊂  푡  

푝
푥  푒 ( ) ⁄  – (훼 + 3훽) +  

(푝 − 푥)
4푡    , 

as required 

Theorem 2.3: If 0 ≤ 푥 < ∞  , 0 ≤ 푦 < ∞  푎푛푑  0 < 푡 < 푡 , then 

(i)∫ 푈(푝, 푥; 푡) 퐺(푝, 푦; 푡) 푑푝 = 퐺(푥, 푦;  푡 + 푡 ) , 

(ii) ∫ 푈(푝, 푖푥;  푡 ) 퐺(푖푝, 푦;  푡 ) =  (−1)  퐺(푥, 푦;  푡 − 푡 )  

where  

푘 =  훼 − 훽 − (푎 − 푏) 푎푛푑 (훼 − 훽) > −1. 
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Proof: By using the estimates derived in the last theorem it is easy to show that the integrals in 

the assertions (i) and (ii) above exist. Now by direct evaluation 퐸푟푑푒푙푦푖 퐸푇 퐴퐿[1954, 푝. 197]. 

푈(푝, 푥;  푡 ) 퐺(푝,푦;  푡 )푑푝 

                          =  
(푥푦) ( )

4 푡  푡  푒 ⁄⁄ ⁄  퐼  
푝푥
2푡  퐼  

푝푦
2푡  푒  푝푑푝

=  
1

2(푡 + 푡 ) (푥푦) ( ) 푒  ( )⁄ 퐼  
푥푦

2(푡 + 푡 )  

                               = 퐺(푥, 푦;  푡 + 푡 ) 

as required. Also, the assertion (ii) can similarly be established. Note that assertion (ii) can be 

considered as the inversion of the integral equation in (i). 

3. THE HEAT TRANSFORM: 

If we now consider the source solution 푈 as the Kernel, then for a suitable 푓, its heat transform F 

is defined by 

                                                         푥  퐹(푥, 푡) =  ∫ 푈(푝, 푥; 푡) 푝 푓(푝)푑푝                                     (3.1) 

where 푘 =  훼 − 훽 − (푎 − 푏),    (훼 − 훽) =  (푎 − 푏) + 푑  푎푛푑 (훼 − 훽) > −1. 

Theorem 3.1: If 푓(푥) is bounded and continuous in 0 < 푥 < ∞, and has a heat transform 

퐹(푥, 푡), then 푥  퐹(푥, 푡)  ∈ 퐻 ,   푡 > 0, where 푘 =  훼 − 훽 − (푎 − 푏) , (훼 − 훽) > −1. 

Proof: From (3.1) above, 

                |푥  퐹(푥, 푡)|  ≤ 퐴 ∫ 푈(푝, 푥; 푡) 푝  푑푝 

< 퐵푡  푥  푝  푒 ( ) ⁄  푑푝 < ∞, 

using the estimate (2.4), where 퐴 = 푢. 푏.푓(푥),   0 < 푥 < ∞.  Hence the integral defining the 

function F exists and is in fact absolutely convergent. Now 

∆  [푥  퐹(푥, 푡)] =  ∆  푈(푝,푥; 푡) 푝  푓(푝) 푑푝  

                            =  ∆  [푈(푝, 푥; 푡)] 푝  푓(푝) 푑푝 
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                      =  
휕
휕푡  푈(푝,푥; 푡) 푝  푓(푝)푑푝 

                       =  
휕
휕푡  푈 (푝, 푥; 푡) 푝  푓(푝) 푑푝 

 =  
휕
휕푡  [푥  퐹(푥, 푡)] , 

proving that 푥  퐹(푥, 푡) satisfies the heat equation (1.1), hence 푥  퐹(푥, 푡)  ∈ 퐻, provided one can 

justify interchanging the operators ∆  and  with the integral sign. Now, using (2.6), we have 

∆  [푈(푝,푥; 푡)] 푝  푓(푝) 푑푝 =  
휕
휕푡  [푈(푝,푥; 푡)] 푝  푓(푝)  푑푝 

                                                                           ≤ 퐴 (푥, 푡) 푝  푒 ( ) ⁄  |푓(푝)| 푑푝 

                                                                              ≤ 퐵(푥, 푡) 푝  푒 ⁄  |푓(푝)| 푑푝 < ∞, 

for all 푥 > 0 and 푡 > 0, and making use of the fact that 

(푝 − 푥)  ≥  
1
2 푝 − 푥  

hence 

푒 ( ) ⁄  ≤  푒   ⁄⁄  , 

giving us the desired justification. 

Theorem 3.2: If 푓(푥) is bounded and continuous in 0 < 푥 < ∞, then 

(i) 푠  퐹(푠, 푡) =  ∫ 푈(푝, 푠; 푡) 푝  푓(푝) 푑푝 ,                                                                               (3.2) 

                     푠 = 휎 + 푖휏  , 휎 > 0 ,   −∞ < 휏 < ∞,   푎푛푑 

(ii) 푠  퐹(푠, 푡) is analytic in the complex half plane 푅푒푠 > 0.   

Proof:  

|푠  퐹(푠, 푡)|  ≤  |푈(푝, 푠; 푡) 푝  푓(푝)| 푑푝 
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                                                                     ≤ 퐴 (휎, 휏, 푡) 푝  푒 ( ) ⁄  |푓(푝)|푑푝 <  ∞, 

due to (2.4). Hence the function 푠  퐹(푠, 푡)exists and is defined by a uniformly convergent 

integral for 휎 > 0 and t > 0.  

To prove that 푠  퐹(푠, 푡) is analytic in the complex half plane 휎 > 0, we need to show that 

휕
휕푠  푈(푝, 푠; 푡) 푝  푓(푝) 푑푝 

converges uniformly. Now, using (2.5) we have  

휕
휕푠  푈(푝, 푠; 푡)푝  푓(푝)  푑푝 ≤ 퐵(휎, 휏, 푡) 푝  푒 ( ) ⁄  |푓(푝)| 푑푝 

which converges uniformly for all 휎 > 0 and t > 0 as seen above. 

Hence the theorem is proved. 

Corollary8:|푠 퐹(푠, 푡)|  ≤  퐶 (휎 + 휏 )  푒 ⁄  .                                                           (3.3) 

Theorem 3.3: Let 퐹(푥, 푡) be as defined above. Then 

                                            푥  퐹(푥, 푡 + 푡 ) =  ∫ 푈(푝, 푥; 푡) 푝  퐹(푝, 푡 ) 푑푝                                (3.4) 

for a fixed 푡 > 0. 

Proof: It is easy to see that the integral in (3.4) exists. 

Now, 

푈(푝, 푥; 푡) 푝  퐹(푝, 푡 ) 푑푝 =  푈(푝,푥; 푡)푑푝 푈(푦,푝; 푡 ) 푦  푓(푦)푑푦 

                                                   =  푦  푓(푦)푑푦 푈(푝, 푥; 푡) 푈(푦, 푝; 푡 ) 푑푝 

                                                                       =  푦 ( )  푓(푦) 푑푦 푈 (푝,푥; 푡) 퐺 (푦, 푝; 푡 ) 푑푝 

                                             =  푦 ( )  푓(푦) 퐺(푥,푦; 푡 + 푡 )푑푦 
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                            =  푈 (푦, 푥; 푡 + 푡 ) 푦  푓(푦)푑푦 

   =  푥  퐹(푥, 푡 + 푡 ), 

making use of the result of Theorem 2.3 and the equation (3.1). 

The change of order of integration in the above analysis is justified due to absolute convergence. 

Thus equation (3.4) is proved. 

Corollary: If 푡 → 0, then (3.4) yields the heat transform (3.1), formally. 

4. The inversion:  

In this section we shall find the inversion of the integral equation (3.4), and then deduce the 

inversion of the heat transform (3.1). 

Theorem 4.1: Let 퐹(푥, 푡) be defined as above. If 

푥  퐹(푥, 푡 + 푡 ) =  푈(푝,푥; 푡) 푝  퐹(푝, 푡 ) 푑푝, 

then 

                                         푥  퐹(푥, 푡 ) =  ∫ 푈(푝, 푖푥; 푡)  퐹(푖푝, 푡 + 푡 )푑푝                            (4.1) 

where 푡, 푡 > 0, 푎 − 푏 > 0 −      ,   (훼 − 훽) > −1  푎푛푑  푘 = 훼 − 훽 − (푎 − 푏). 

Proof: Now form (3.4), 

(푖푥)  퐹(푖푥, 푡 + 푡 ) =  푈(푝, 푖푥; 푡) 푝  퐹(푝, 푡 ) 푑푝, 

or simplifying, 

푎 퐹(푖푥, 푡 + 푡 ) =  
1
2푡  푝  푒 ⁄  퐽

푝푥
2푡  퐹(푝, 푡 ) 푑푝. 

If we put 푥 = 2푡푦, then above equation gives, 

                                   (2푡)  푦  푒  퐹(푖2푡푦, 푡 + 푡 ) 

=  (푝푦)  퐽 (푝푦) 푝  퐹(푝, 푡 ) 푒 ⁄  푒  푑푝 

which is the usual form of the Hankel type transform, and therefore on inverting gives 
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                           푦  푒 ⁄  퐹(푦, 푡 )  

=  (푝푦)  퐽 (푝푦) (2푡)  푒  퐹(푖2푡푝, 푡 + 푡 ) 푝  푑푝. 

Again, let 푣 = 2푡푝, and simplify to get 

푦  퐹(푦, 푡 ) =  푈(푣, 푖푦; 푡) 
푣
푡  퐹(푖푣, 푡 + 푡 ) 푑푣. 

 

Corollary 1: (3.4) can alternatively be written as                                                                     (4.2) 

푦  퐹(푦, 푡 ) =  푈(푥, 푦;−푡) 푥  퐹(푥, 푡 + 푡 ) 푑푥 

Corollary 2: Let 푡 → 0. Then 

lim
→
퐹(푥, 푡 ) = 푓(푥) 

and the pair of heat transforms (3.4) and (3.5) reduce to respectively, 

                                                    푥  퐹(푥, 푡) =  ∫ 푈(푝, 푥; 푡) 푝  푓(푝) 푑푝                                       (4.3) 

and  

                                                푥  푓(푥) =  ∫ 푈(푝, 푖푥; 푡)  퐹(푖푥, 푡) 푑푝                                   (4.4) 

formally. 

5. Operational calculus: 

By Taylor series expansion, we have  

푥  퐹(푥, 푡 + 푡 ) =  푥  
푡
푛!  

휕
휕푢

[퐹(푥,푢)]  

                            =  
푡
푛!  

휕
휕푢  [푥  퐹(푥,푢)] . 

Since 푥  퐹(푥, 푡)  ∈ 퐻, that is 

∆  [푥  퐹(푥, 푡)] =   [푥  퐹(푥, 푡)], ∆  ≡  +  − . 

Thus from above, we have 
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푥 퐹(푥, 푡 + 푡 ) =  
푡
푛!  (∆ )  [푥  퐹(푥, 푡 )] 

                                                                           =  푒  ∆   ( , ) . 

The heat transform (3.4), can now be written symbolically as,  

                                                       푒 ∆ [푥  퐹(푥, 푡 )] =  푥  퐹(푥, 푡 + 푡 ),                                        (5.1) 

where  

푒 ∆  [휙(푥)]  ≡  푈(푝, 푥; 푡) 휙(푝)푑푝. 

Therefore the inversion of (5.1) is then 

                                                  푥  퐹(푥, 푡 ) =  푒 ∆ [푥  퐹(푥, 푡 + 푡 )],                                          (5.2) 

where from (4.2), 

푒 ∆  [휓(푥)]  ≡ 푈(푝,푥;−푡) 휓(푝)푑푝. 

In particular if we let 푡 → 0, then formally, (5.1) and (5.2) reduce to the pair 

                                                           푒 ∆ [푥 푓(푥)] =  푥  퐹(푥, 푡)                                               (5.3) 

and  

                                                          푥  푓(푥) =  푒 ∆  [푥  퐹(푥, 푡)],                                           (5.4) 

respectively, giving us a pair of heat transforms in operator form. 

Example 1: Let  

푓(푥) =  푥 ( )  퐼 (푥). 

Then its heat transform is (푠푒푒 푊푎푝ℎ푎푟푒[2012]), 

퐹(푥, 푡) =  푒  푥 ( )  퐼 (푥)    , (훼 − 훽) > −1. 

Now, 

푒 ∆ [푥  퐹(푥, 푡)] =  푒 ∆  푒  푥 ( ) 퐼 (푥)  

                                 =  푒  푒 ∆  푥 ( ) 퐼 (푥)  

                                                       =  푒  
(−푡)
푛!  (∆ )  푥 ( ) 퐼 (푥) . 

But  
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∆  푥 ( ) 퐼  (푥) =  푥 ( ) 퐼 (푥), 

hence  

(∆ )  푥 ( )퐼 (푥) =  푥 ( ) 퐼 (푥), 푛 = 0,1,2, …. 

and   

푒 ∆  [푥  퐹(푥, 푡)] =  푒  
(−푡)
푛!  푥 ( ) 퐼 (푥) 

where                                                               =  푥 ( ) 퐼 (푥) = 푥  푓(푥) say, 

    푓(푥) =  푥 ( )  퐼 (푥) , 

as required. 

 

Example 2: Let  

퐹(푥, 푡) = 1. 

Then 

푥  푓(푥) =  푒 ∆  [푥 ] =  
(−푡)
푛!  (∆ )  [푥 ]    .  

 

Now,  

∆  [푥 ] =  
휕
휕푥 +  

4푎
푥  

휕
휕푥 −

푑
푥  [푥 ] 

                 =  (푘(푘 − 1) + 4푎푘 − 푑 ) 푥  

                                                                   = 0, 

since 푘 = 훼 − 훽 − (푎 − 푏) 푎푛푑 (훼 − 훽) =  (푎 − 푏) + 푑 . Therefore 

(∆ )  [푥 ] = 0  , 푛 = 1,2,3, … … …. 

and  

푥  푓(푥) =  푥  , 

so that 

푓(푥) = 1. 

Thus 푓(푥) = 1  푎푛푑  퐹(푥, 푡) = 1 gives us a pair of heat transforms which can be verified by 

evaluating the integrals (4.3) and (4.4).  
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6. Special Cases:  

Let 푑 = 0. The general heat equation (1.1) reduces to  

휕 푢
휕푥 +  

4푎
푥  
휕푢
휕푥 =  

휕푢
휕푡       , 

which has the solution, from (2.3) as 

푈(푝, 푥; 푡) =  푝 ( )  퐺  (푝, 푥; 푡). 

The heat transform (3.1) is then 

퐹(푥, 푡) =  푝  퐺  (푝, 푥; 푡) 푓(푝) 푑푝, 

called the Poisson-Hankel transform, and its inversion is given by  

푓(푥) =  ∫ 푝  퐺  (푝, 푖푥; 푡) 퐹(푖푝, 푡)푑푝,  (푆푒푒 [5]). 

If we let 푑 = 푎 − 푏 + = 0,   훼 − 훽 = −   then (1.1) reduces to  

휕 푢
휕푥 =  

휕푢
휕푡    , 

the ordinary heat equation, whose source solution is  

푈(푝,푥; 푡) =  퐺 (푝,푥; 푡) =  −
1
√휋푡

 푒 ⁄ cosh
푝푥
2푡 . 

Also form (4.3) and (4.4), we have 

퐹(푥, 푡) =  
1
√휋푡

 푒 ⁄  cosh
푝푥
2푡  푓(푝) 푑푝  , 

and  

푓(푥) =  
1
√휋푡

 푒 ⁄ cosh
푝푥
2푡  퐹(푝, 푡)푑푝. 

Simbolically, the operator 

∆ =  
휕
휕푥 =  퐷     , 

then (5.3) and (5.4) yield  

퐹(푥, 푡) =  푒 [푓(푥)] 

푓(푥) =  푒  [퐹(푥, 푡)] 
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which gives the Eddington solution of the ordinary heat equation (푠푒푒 푆푛푒푑푑표푛 [4,푝. 85]). 
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