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ABSTRACT 

We define the quaternions |H intrinsically, without recourse to considering units i, j, k= ij (as 
usually made), as “scalar and vector”, q = (u, x) in R4 = |R  R3. Product qq´= (uu´– x·x,´ ux´+ 
u´x + x x´), conjugate  q,  norm N(q) and inverse are found likewise, with the help of a 
definite quadratic form Q(x), which allows to define norm and vector product. From any 
oriented orthonormal base ei (i=1, 2, 3) we recover the usual units i, j, k; the complex 
algebra © is recovered when in the product qq´ the two vectors x, x´ are parallel. Also, the 
quadratic equation q2 – (Tr q)·q + Det(q) = 0 holds, with solutions q´ given by conjugation 

q  and g·q, where g  SO(3) = Aut (|H). 

1. Traditional quaternions. W.R. Hamilton (1842) defined the quaternions |H as a “field” 
in four real dimensions, but not commutative. He generalized the complex numbers z = 
x+iy, with i2 = –1, to 

   q = u + xi + yj + zk = u + ... = Re q + Im q           (1-1) 

where i2 = j2 = k2 = –1, ij = k = – ji, and cyclically jk = i and ki = j. In the usual way one defines 
the product qq´, the conjugate q as = u - xi - yj – zk, the norm N(q):= q q as     u2 + (x2 + y2 

+ z2), which is real ≥ 0, and the inverse as q-1 = q /N (q). Conjugation is antiautomophism, 

meaning (qq´)    = q´ q, but any 3D rotation is an automorphism. In fact, for  an 
automorphism (q) = (Re q + Im q) = Re q + (Im q); N(Im q) is real, hence preserved 

under , so one concludes 

    Aut(|H) = SO(3)     (1-2) 

 It is not the whole of O(3) because one must maintain orientation (ij= k);  is 
orthogonal because it maintains the 2-sphere S2 of unit imaginary quaternions; also we 
used the fact that the field R has no automorphisms ≠ Id. 

 In this note we want to reproduce all algebraic results about quaternions without 
referring to three preselected units i, j, k; that is, we are to exhibit the intrinsic nature of the 
quaternion skew field; (the word skew field just means a non-commutative “field”). 

2. Intrinsic treatment. Consider, in R4, the 1+3 split, R4 = |R + R3, where           V = R3 is the 
usual 3-dim real vector space. Choose in it a definite quadratic form Q: that is, chose a 
bilinear mapping f: R3  R3  |R; f(x, x´) := x·x´, which is i) symmetric ii) regular 

(nondegenerate: the associated map f : V in the dual V* is isomorphism; or: in any base, 
which converts f into a matrix F, is det F ≠0), and iii) definite, meaning Q(x) = x2 > 0 for x ≠ 
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0. It is well known that there is a unique Q up to equivalences, satisfying these three 
conditions (Sylvester). 

 The calculations now are straightforward. Define, in |R  R3 the pair 

    q:= (u, x)                        (2-1)  

(where u lies in R and x is any 3-vector in V = R3) as a quaternion. 

 We have then a skew field, with the usual definitions [q´:=(u´, x´)] 

   q + q´=( u + u´, x + x´).-       rq = (ru, rx )     (for any real r).    
          qq´=[(uu´– x·x´),  ux´+ u´x + x x´]                  (2-2) 

 The vector product  is well defined: if x and x´ are parallel, the vector product is 
defined as zero. In 3 dimensions, for the biplane < x, x´> there is a unique orthogonal 
direction; x  x´ lies in this  direction, and x x´ has modulus |x| · |x´| |sin ( )|, where Q(x) 
:= x2 and |x| = +√Q(x). The angle , 0 ≤  ≤ 2π is measured from x to x´. The rest of 
calculation (conjugate, norm and inverse) proceed as above: 

 q  = (u, – x);   q q = u2 + x2 := N(q) ≥ 0;    q-1 = q / N (q)  ( q≠0)              (2-3) 

 Notice N(q) is calculated from the above product qq´. If we define any orthoframe  

= {e1, e2, e3} with e1  e2 = e3  cyclic etc., we recover the original Hamilton formulation with i2 
= -1, ij = k, etc., via the correspondence e1 = i, e2 = j. 

 We recover the Complex field © whenever the two vectors in q, q´ are parallel: 

 (u, x)(u´, rx) = [u u´ – r x·x,  x(u´+ ru) + r x x] = (uu´– rx2,  x)              (2-4) 

with = u´+ ru  |R.  Defining i = x^ as a unit vector along x, we recover the usual complex 
product, (x + iy) ·(x´+ iy´), when y = |x| and y´= r|x| for |H. 

 To complete the study, define Tr(q) := q + q = 2u  and Det(q) := N(q) = q q. Then 
the quadratic equation follows: 

 q2 – (Tr(q))·q + Det(q) = qq – ( q + q)·q + q q = 0                (2-5) 

 As an equation on q, we have the solutions q = q´ where 

   q´= (2u ± √-4x2)/2 = (u, ± x´)      (2-6) 

 That is, together with q, we have the conjugate q and any other q´ with the same 
real part and norm, x´2 = x2. It is nice that the equation (2-5) has as solutions the whole set 
AntiAuto(|H) ·q, if q is the original quaternion. (In the complex case one just obtains z and 

z ). 
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3. Comparison between division algebras.  The reals |R, the complex ©, the quaternions 
|H and the octonions O (Graves, 1842) are the four division algebras over the real field |R 
(Baez, 2011). If we define in |R conjugation by the identity, we can play the same game as 
before in the four cases, for products, norm and inverses. We just notice some subtle 
differences in the quadratic equation: 

 R) For the reals, solutions of the quadratic equation r2 – (2r)·r + r2 = 0 is r´=       r ± 0: 
this is consequence of the fact that the field R has no automorphisms, Aut(|R) = I. 

 C) For the complex case, (as said), z = x + iy, we have z2 – (2x)·z + (x2 + y2) = 0, with 
solutions z´= x±iy: the conjugation is automorphism, and AutR© = Z2. 

 O) For the octonions, writing o = (v, , where v is real and  is a 7-vector, the vector 
product of the imaginary parts   ´ is NOT defined a priori, so the scheme cannot be 
applied automatically. Indeed, as shown by us somewhere else (Boya et al., 2010), octonion 
product maintains a quadratic form Q plus a 3-form , and indeed the Octonion 
Automorphism group (Cartan, 1907) is G2  SO(7), an (exceptional) simple Lie group with 
dimension 14 = 72 –{7, 3} = 49 – 35, consequent with G2 keeping a 3-form in R7. For 
Feynman treatment of vector products in 7 dimension (Silagadze 2002). 

 In a way, the work we present here is anti-historic: namely Gibbs and Heaviside 
introduced the vector calculus in 3 dimensions from Hamilton´s quaternions; but once this 
is established, we find useful look back to the quaternions proper and interpret them as a 
pair: scalar plus vector; after all, the concept of vector is more elementary that of 
quaternion... Our exposition also mimics Hamilton´s treatment of the complex numbers z as 
a pair of real numbers, z = (x, y). 

 More pertinent discussions of these algebras (mainly for |H and O) can be found in 
the book by Conway and Smith (2003). 
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