Research Article

ON SOME POLYNOMIAL INEQUALITIES NOT VANISHING IN A DISK

*Irshad Ahmad
Department of mathematics, National Institute of Technology, Kashmir, India -190006
*Author for Correspondence

ABSTRACT

If $P(z)$ is a polynomial of degree n , having no zeros in the unit disk, then for all $\alpha, \beta \in C$ with $|\alpha| \leq 1,|\beta| \leq 1$, it is known that

$$
\begin{gathered}
\left|P(R z)-\alpha P(z)+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} P(z)\right| \leq \frac{1}{2}\left[\left|R^{n}-\alpha+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\}\right||z|^{n}+\right. \\
1-\alpha+\beta R+12 n-\alpha \max z=1 P z, \quad \text { for } \mathrm{R} \geq 1 \text { and } z \geq 1
\end{gathered}
$$

2000 Mathematics Subject Classification. Primary 30A06, 30A64; Secondary 30E10

Key Words: Polynomials, Inequalities in the complex domain, Zeros.

INTRODUCTION

Let $P(z)$ be a polynomial of degree atmost n , then according to a famous result known as Bernsteins inequality (for refrence ,see[1994,p.531] or [1941]),

$$
\begin{equation*}
\max _{|z|=1}^{\max }\left|P^{\prime}(z)\right| \leq n_{|z|=1}^{\max }|P(z)| \tag{1}
\end{equation*}
$$

Whereas concerning the maximum modulus of $P(z)$ on a large circle $|z|=\mathrm{R}>1$, we have

$$
\begin{equation*}
\max _{|z|=R>1}|P(z)| \leq R R_{|z|=1}^{n} \max _{\mid c} P(z) \mid \tag{2}
\end{equation*}
$$

(for reference see [1994,p.442] or [1925,vol.1,p.137]).
If we restrict ourselves to the class of polynomials having no zero in $|z|<1$, then inequalities (1) and (2) can be sharpened. In fact, $P(z) \neq 0$ in $|z|<1$, then (1) and (2)can be respectively replaced by

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \leq \frac{n}{2} \max _{|z|=1}|P(z)| \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\max _{|z|=R>1}|P(z)| \leq \frac{R^{n}+1}{2} \max _{|z|=1}|P(z)| \tag{4}
\end{equation*}
$$

Inequality (3) was conjectured by ErdÖs and later verified by Lax [1944](see also [1980]), whereas Ankeny and Rivlin [1955] used (3) to prove (4) .

Research Article

Recently both the inequalities (3) and (4) were further improved by Jain [1997], who proved that if $P(z) \neq{ }_{|z|=1}^{\max }\left|P^{\prime}(z)\right|$ in $|z|<1$, then for every real or complex number β with, $|\beta| \leq 1$,
$\left|z P^{\prime}(z)+\frac{n \beta}{2} P(z)\right| \leq \frac{n}{2}\left[\left|1+\frac{\beta}{2}\right|+\left|\frac{\beta}{2}\right|\right] \max _{|z|=1}|P(z)|$,
And $\left|P(R z)+\beta\left\{\left(\frac{R+1}{2}\right)^{n}\right\} P(z)\right| \leq \frac{1}{2}\left[\left|R^{n}+\beta\left(\frac{R+1}{2}\right)^{n}\right|+\left|1+\beta\left(\frac{R+1}{2}\right)^{n}\right|\right] \max _{|z|=1}|P(z)|$,
for $\mathrm{R} \geq 1$ and
$|z|=1$
More recently Abdul Aziz and Nisar Ahmad Rather [2004] have investigated the dependence of

$$
\max _{|z|=1}|P(R z)-\alpha P(z)|
$$

on $\max _{|z|=1}|P(z)|$ for every real or complex number α and $\mathrm{R} \geq 1$. As a compact generalisation of inequalities (1) and (2), they have shown that if $P(z)$ is a polynomial of degree n , then for all real or complex number α with , $|\alpha| \leq 1$ and $\mathrm{R} \geq 1$

$$
\begin{equation*}
|P(R z)-\alpha P(z)| \leq\left|R^{n}-\alpha\right||z|^{n} \max _{|z|=1}|P(z)| \tag{7}
\end{equation*}
$$

for $|z| \geq 1$. This results is sharp and equality holds for $P(z)=\lambda z^{n}, \lambda \neq 0$. Inequality (1) can be obtained from inequality (7) by dividing the two sides of (7) by $\mathrm{R}-1$ and taking limit $\mathrm{R} \rightarrow 1$, with $\alpha=1$.For $\alpha=0$, inequality (7) reduces to (2) .

As a corresponding compact generalisation of inequality (3) and (4), Abdul Aziz and Nisar Ahmad Rather [2004] have already shown that if $P(z)$ is a polynomial of degree n , which has no zeros in $|z|<1$, ,then for all $\alpha \in C$ or R with $|\alpha| \leq 1$ and $R \geq 1$,
$|P(R z)-\alpha P(z)| \leq \frac{1}{2}\left[\left|R^{n}-\alpha\right||z|^{n}+|1-\alpha|\right] \max _{|z|=1}|P(z)|$, for $|z| \geq 1$.
This result is sharp and equality holds for $P(z)=z^{n}+1$.
Abdul Aziz and Nisar Ahmad Rather [2004] have also proved the following results:
Theorem A. If $P(z)$ is a polynomial of degree n , then for all real or complex α and β with $|\beta| \leq 1,|\alpha| \leq 1$ and $\mathrm{R} \geq 1$,
$\left|P(R z)-\alpha P(z)+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} P(z)\right|+\left|Q(R z)-\alpha Q(z)+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} Q(z)\right|$
$\leq\left[\left|R^{n}-\alpha+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\}\right||z|^{n}+\left|1-\alpha+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\}\right|\right] \max _{|z|=1}|P(z)|, \quad$ for
$\mathrm{R} \geq 1$ and $|z| \geq 1$. where $\left.Q(z)=z^{n} \overline{p(} \frac{1}{\bar{z}}\right)$. This results is sharp and equality holds for $P(z)=$ $\lambda z^{n}, \lambda \neq 0$.

Theorem B. If $P(z)$ is a polynomial of degree n, which does not vanish in $|z|<1$ then for all real or complex α and β with $|\beta| \leq 1,|\alpha| \leq 1$ and $\mathrm{R} \geq 1$,

Research Article

$\left|P(R z)-\alpha P(z)+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} P(z)\right| \leq \frac{1}{2}\left[\left|R^{n}-\alpha+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\}\right||z|^{n}+\right.$ $1-\alpha+\beta R+12 n-\alpha \max z=1 P z$, for $\mathrm{R} \geq 1$ and $z \geq 1$.

This result is sharp and equality holds for $P(z)=z^{n}+1$.
Theorem. If $P(z)$ is a polynomial of degree n, which does not vanish in $|z|<1$ then for all real or complex α and β with $|\beta| \leq 1,|\alpha| \leq 1$ and $\mathrm{R} \geq 1$,
$\left|P(R z)-\alpha P(z)+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} P(z)\right| \leq \frac{1}{2}\left[\left.\left|R^{n}-\alpha+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\}\right| \right\rvert\, Z^{n}+\right.$
$1-\alpha+\beta R+12 n-\alpha \max z=1 P z-12 R n-\alpha+\beta R+12 n-\alpha z n-1-\alpha+\beta R+12 n-\alpha \min z=1 P z$, for $\mathrm{R} \geq 1$ and $|z| \geq 1$.

This result is sharp and equality holds for $P(z)=z^{n}+1$.
Remark1. If we take $\alpha=0$, in theorem (1), we get refinement of inequality (6) whereas refinement of inequality (8) follows by taking $\beta=0$ in inequality (9).For $\alpha=\beta=0$, inequality (9) reduces to refinement of inequality (4).

The next corollary which is obtained by taking $\alpha=1$ refinement of corollary 1 , for polynomials not vanishing in the unit disk due to Aziz and Nisar ahmad rather [2004].

Corollary1. If $P(z)$ is a polynomial of degree n , which does not vanish in $|z|<1$ then for all real or complex α and β with $|\beta| \leq 1,|\alpha| \leq 1$ and $\mathrm{R} \geq 1$,
$\left|P(R z)-P(z)+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-1\right\} P(z)\right| \leq \frac{1}{2}\left[\left|R^{n}-1+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-1\right\}\right||z|^{n}+\right.$
$\beta R+12 n-1 \max z=1 P Z-12 R n-1+\beta R+12 n-1 \quad Z n-\beta R+12 n-1 \min z=1 P z$, For $\mathrm{R} \geq 1$ and $|z| \geq 1$. The result is sharp and equality holds for $P(z)=z^{n}+1$.

Remark2. Dividing the two sides of (10) by R-1 and letting R $\rightarrow 1$, we obtain ,in particular , refinement of (3).

Lemma1. If $F(z)$ is a polynomial of degree n , which does vanish in $|z| \leq 1$ and $P(z)$ is a polynomial of degree at most n such that

$$
|P(z)| \leq|F(z)| \quad \text { For } \quad|z|=1
$$

then for all real or complex α and β with $|\beta| \leq 1,|\alpha| \leq 1$ and $\mathrm{R} \geq 1$,

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online)
An Online International Journal Available at http://www.cibtech.org/jpms.htm
2012 Vol. 2 (1) January-March, pp. 157-162/ Irshad Ahmad

Research Article

$\left|P(R z)-\alpha P(z)+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} P(z)\right| \leq\left|F(R z)-\alpha F(z)+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} F(z)\right|$
for $|z| \geq 1$.This lemma is due to Abdul Aziz and Nisar ahmad rather.
Lemma2. If $P(z)$ is a polynomial of degree n , which does not vanish in $|z| \leq 1$ then for all real or complex α and β with $|\beta| \leq 1,|\alpha| \leq 1$ and $\mathrm{R} \geq 1$,

$$
\left|P(R z)-\alpha P(z)+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} P(z)\right| \leq \left\lvert\, Q(R z)-\alpha Q(z)+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-\right.\right.
$$

$\alpha Q Z R n-\alpha+\beta R+12 n-\alpha \quad z n-1-\alpha+\beta R+12 n-\alpha \min z=1 P Z$

Where $Q(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}$ for $|z| \geq 1$.

Proof of lemma 2. $\min _{|z|=1}|P(z)|=m$ which implies $m \leq|P(z)|$ for $|z|=1$. for any real or complex $\lambda, \quad|\lambda| \leq 1$,

$$
m|\lambda| \leq|P(z)|
$$

Therefore $\mathrm{G}(\mathrm{z})=\mathrm{P}(\mathrm{z})+\lambda m$ does not vanish in open unit disk by Rouches theorem. If $\mathrm{H}(\mathrm{z})==z^{n}$ $\left.\overline{G(} \frac{1}{\bar{z}}\right)=Q(z)+\bar{\lambda} \mathrm{m} z^{n}$. Then it has all zeros in $|z| \leq 1$, and $|G(z)|=|H(z)|$ on $|z|=1$. Applying lemma 1 with $\mathrm{P}(\mathrm{z})=\mathrm{G}(\mathrm{z})$ and $\mathrm{F}(\mathrm{z})=\mathrm{H}(\mathrm{z})$ we have

$$
\begin{array}{r}
\left|\left(P(R z)+\lambda m(R z)^{n}\right)-\alpha\left(P(z)+\lambda m(z)^{n}\right)+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\}\left(P(z)+\lambda m(R z)^{n}\right)\right| \\
\leq\left|(Q(R z)+\overline{\lambda \mathrm{m}})-\alpha(Q(z)+\overline{\lambda \mathrm{m}})+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\}(Q(z)+\overline{\lambda \mathrm{m}})\right|
\end{array}
$$

For $|z| \geq 1$, which implies

$$
\begin{aligned}
& \left|P(R z)-\alpha P(z)+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} P(z)+\lambda m(z)^{n}\left[R^{n}-\alpha+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\}\right]\right| \leq \\
& \left.\left|Q(R z)-\alpha Q(z)+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} Q(z)\right|+|\bar{\lambda}| \right\rvert\, 1-\alpha+ \\
& \beta R+12 n-\alpha \min z=1 P z
\end{aligned}
$$

For $|z| \geq 1$, further choosing argument of λ, suitably, we shall get

Research Article

$\left|P(R z)-\alpha P(z)+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} P(z)\right|+\left|\lambda m(z)^{n}\left[R^{n}-\alpha+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\}\right]\right| \leq$ $\left.\left|Q(R z)-\alpha Q(z)+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} Q(z)\right|+|\bar{\lambda}| \right\rvert\, 1-\alpha+$
$\beta R+12 n-\alpha \min z=1 P z$

For $|z| \geq 1$.Letting $|\lambda| \rightarrow 1$, we get desired result.
Proof of theorem: Since by lemma 2, we have

$$
\begin{aligned}
& \left|P(R z)-\alpha P(z)+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} P(z)\right| \leq\left|Q(R z)-\alpha Q(z)+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} Q(z)\right| \\
& {\left[\left|R^{n}-\alpha+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\}\right||z|^{n}-\left|1-\alpha+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\}\right|\right] \min _{|z|=1}|P(z)|, \text { for } \mathrm{R}}
\end{aligned}
$$

≥ 1 and $|z| \geq 1$. Where $\left.Q(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right.}\right)$. Adding on both sides
Adding on both sides

$$
\left|P(R z)-\alpha P(z)+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} P(z)\right|
$$

And using theorem(A), we get $\left|P(R z)-\alpha P(z)+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} P(z)\right| \leq \frac{1}{2}\left[\mid R^{n}-\alpha+\right.$ $\beta R+12 n-\alpha z n+1-\alpha+\beta R+12 n-\alpha \max z=1 P z-12 R n-\alpha+\beta R+12 n-\alpha z n-1-\alpha+\beta R+12 n$ $-\alpha \min z=1 P_{Z}$, for $\mathrm{R} \geq 1$ and $z \geq 1$.

Hence the result.

REFERENCES

N.C. Ankeny and T.J. Ravin, on a theorem of S. Bernstein, Pacific Journal of Mathematics, 5(1955) 849-852.
A.Aziz and Q.G. Mohammad, simple proof of theorem of Erdös and Lax,Proceedings of American Mathematical Society, 80(1980), 119-122.
A.Aziz and N. A. Rather, on an inequality of S. Bernstein and Gauss-Lucas theorem, Analytic and geometric inequalities and their applications, (Th.M. Rassis and H. M. Sarivastava eds.) Kluwer Academy Publication (2004) .
A.Aziz and N.A.Rather, some compact generalisations of S. Bernstein -type inequalities for polynomials, Mathematical inequalities and applications, 7,3(2004),393-403.
V. K. Jain, generalisation of certain well known inequalities for polynomials, Glasnik Matematicki, 32(52)(1997), 45-51.
P. D. Lax, Proof of a Conjecture of P. Erdos on the derative of a polynomial, Bulletin of . American Mathematical Society (N.S.), 50(1944), 509-513.
G.V. Milovanoic , D. S. Mitrinovic and Th. M. Rassias, Topics in polynomials , Extremal problems , inequalities, zeros (Singapore: world Scientific), (1994).

Research Article

G. Polya and G. Szego , Aufgaben and Lehrsatze aus der. Analysis (Berlin: Springer verlag)(1925).
A.C.Schaeffer, inequalities of A. Markoff and S. Bernstein for polynomials and related functions, Bull. Amer. Math. Soc.(N.S) 47(1941), 565-579.

