Research Article

ON SOME POLYNOMIAL INEQUALITIES NOT VANISHING IN A DISK

*Irshad Ahmad

Department of mathematics, National Institute of Technology, Kashmir, India -190006 *Author for Correspondence

ABSTRACT

If P(z) is a polynomial of degree n, having no zeros in the unit disk then for all $\alpha, \beta \in C$ with $|\alpha| \le 1, |\beta| \le 1$, it is known that

$$\left| P(Rz) - \alpha P(z) + \beta \left\{ \left(\frac{R+1}{2} \right)^n - |\alpha| \right\} P(z) \right| \leq \frac{1}{2} \left[\left| R^n - \alpha + \beta \left\{ \left(\frac{R+1}{2} \right)^n - |\alpha| \right\} \right| |z|^n + 1 - \alpha + \beta R + 12n - \alpha \max z = 1Pz, \text{ for } R \geq 1 \text{ and } z \geq 1.$$

2000 Mathematics Subject Classification. Primary 30A06, 30A64; Secondary 30E10

Key Words: Polynomials, Inequalities in the complex domain, Zeros.

INTRODUCTION

Let P(z) be a polynomial of degree atmost n, then according to a famous result known as Bernsteins inequality (for refrence, see[1994,p.531]or [1941]),

$$\sum_{|z|=1}^{\max} |P'(z)| \le n \max_{|z|=1}^{\max} |P(z)|$$
(1)

Whereas concerning the maximum modulus of P(z) on a large circle |z|=R > 1, we have

$$\max_{|z|=R>1} |P(z)| \le R^n \max_{|z|=1} |P(z)|$$
(2)

(for reference see [1994,p.442] or [1925,vol.1,p.137]).

If we restrict ourselves to the class of polynomials having no zero in |z| < 1, then inequalities (1) and (2) can be sharpened. In fact, $P(z) \neq 0$ in |z| < 1, then (1) and (2) can be respectively replaced by

$$\binom{\max}{|z|=1} P'(z) \le \frac{n}{2} \frac{\max}{|z|=1} |P(z)|$$
(3)

and

$$\max_{|z|=R>1} |P(z)| \le \frac{R^{n+1}}{2} \max_{|z|=1} |P(z)|$$
(4)

Inequality (3) was conjectured by $\text{Erd}\ddot{O}s$ and later verified by Lax [1944](see also [1980]), whereas Ankeny and Rivlin [1955] used (3) to prove (4).

Research Article

Recently both the inequalities (3) and (4) were further improved by Jain [1997], who proved that if $P(z) \neq \max_{|z|=1}^{max} |P'(z)|$ in |z| < 1, then for every real or complex number β with $|\beta| \le 1$,

$$\left|zP'(z) + \frac{n\beta}{2}P(z)\right| \leq \frac{n}{2} \left[\left|1 + \frac{\beta}{2}\right| + \left|\frac{\beta}{2}\right|\right] \max_{|z|=1}|P(z)|, \qquad (5)$$
And
$$\left|P(Rz) + \beta\left\{\left(\frac{R+1}{2}\right)^n\right\}P(z)\right| \leq \frac{1}{2} \left[\left|R^n + \beta\left(\frac{R+1}{2}\right)^n\right| + \left|1 + \beta\left(\frac{R+1}{2}\right)^n\right|\right] \max_{|z|=1}|P(z)|, \qquad (5)$$
for $R \geq 1$ and
$$|z| = 1 \qquad (6)$$

More recently Abdul Aziz and Nisar Ahmad Rather [2004] have investigated the dependence of

 $\max_{|z|=1} |P(Rz) - \alpha P(z)|$

on $\max_{|z|=1} |P(z)|$ for every real or complex number α and $R \ge 1$. As a compact generalisation of inequalities (1) and (2), they have shown that if P(z) is a polynomial of degree n, then for all real or complex number α with $|\alpha| \le 1$ and $R \ge 1$

$$|P(Rz) - \alpha P(z)| \leq |R^{n} - \alpha| |z|^{n} \max_{|z|=1} |P(z)|$$
(7)

for $|z| \ge 1$. This results is sharp and equality holds for $P(z) = \lambda z^n$, $\lambda \ne 0$. Inequality (1) can be obtained from inequality (7) by dividing the two sides of (7) by R-1 and taking limit $R \rightarrow 1$, with $\alpha = 1$. For $\alpha = 0$, inequality (7) reduces to (2).

As a corresponding compact generalisation of inequality (3) and (4), Abdul Aziz and Nisar Ahmad Rather [2004] have already shown that if P(z) is a polynomial of degree n, which has no zeros in |z| < 1, then for all $\alpha \in C$ or R with $|\alpha| \le 1$ and $R \ge 1$,

$$|P(Rz) - \alpha P(z)| \le \frac{1}{2} [|R^n - \alpha||z|^n + |1 - \alpha|] \max_{|z|=1} |P(z)|, \text{ for } |z| \ge 1.$$
(8)

This result is sharp and equality holds for $P(z) = z^n + 1$.

Abdul Aziz and Nisar Ahmad Rather [2004] have also proved the following results:

Theorem A. If P(z) is a polynomial of degree n, then for all real or complex α and β with $|\beta| \le 1$, $|\alpha| \le 1$ and $R \ge 1$,

$$\begin{aligned} \left| P(Rz) - \alpha P(z) + \beta \left\{ \left(\frac{R+1}{2} \right)^n - |\alpha| \right\} P(z) \right| + \left| Q(Rz) - \alpha Q(z) + \beta \left\{ \left(\frac{R+1}{2} \right)^n - |\alpha| \right\} Q(z) \right| \\ \leq \left[\left| R^n - \alpha + \beta \left\{ \left(\frac{R+1}{2} \right)^n - |\alpha| \right\} \right| |z|^n + \left| 1 - \alpha + \beta \left\{ \left(\frac{R+1}{2} \right)^n - |\alpha| \right\} \right| \right] \max_{|z|=1} |P(z)|, \text{ for } \\ R \geq 1 \text{ and } |z| \geq 1. \text{ where } Q(z) = z^n \overline{p(\frac{1}{z})}. \text{ This results is sharp and equality holds for } P(z) = \\ \lambda z^n, \lambda \neq 0. \end{aligned}$$

Theorem B. If P(z) is a polynomial of degree n, which does not vanish in |z| < 1 then for all real or complex α and β with $|\beta| \le 1$, $|\alpha| \le 1$ and $R \ge 1$,

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) An Online International Journal Available at http://www.cibtech.org/jpms.htm 2012 Vol. 2 (1) January-March, pp. 157-162/ Irshad Ahmad

Research Article

$$\left| P(Rz) - \alpha P(z) + \beta \left\{ \left(\frac{R+1}{2} \right)^n - |\alpha| \right\} P(z) \right| \le \frac{1}{2} \left[\left| R^n - \alpha + \beta \left\{ \left(\frac{R+1}{2} \right)^n - |\alpha| \right\} \right| |z|^n + 1 - \alpha + \beta R + 12n - \alpha \max z = 1Pz, \text{ for } R \ge 1 \text{ and } z \ge 1.$$

This result is sharp and equality holds for $P(z) = z^n + 1$.

Theorem. If P(z) is a polynomial of degree n, which does not vanish in |z| < 1 then for all real or complex α and β with $|\beta| \le 1$, $|\alpha| \le 1$ and $R \ge 1$,

$$\left| P(Rz) - \alpha P(z) + \beta \left\{ \left(\frac{R+1}{2} \right)^n - |\alpha| \right\} P(z) \right| \le \frac{1}{2} \left[\left| R^n - \alpha + \beta \left\{ \left(\frac{R+1}{2} \right)^n - |\alpha| \right\} \right| |z|^n + \frac{1}{2} \left| R^n - \alpha + \frac{R}{2} \right| \left| R^n - \alpha$$

 $1-\alpha+\beta R+12n$ $-\alpha$ max $z=1Pz-12Rn-\alpha+\beta R+12n$ $-\alpha$ $zn-1-\alpha+\beta R+12n$ $-\alpha$ min z=1Pz, for $R \ge 1$ and $|z| \ge 1$. (9)

This result is sharp and equality holds for $P(z) = z^n + 1$.

Remark1. If we take $\alpha = 0$, in theorem (1), we get refinement of inequality (6) whereas refinement of inequality (8) follows by taking $\beta = 0$ in inequality (9). For $\alpha = \beta = 0$, inequality (9) reduces to refinement of inequality (4).

The next corollary which is obtained by taking $\alpha = 1$ refinement of corollary 1, for polynomials not vanishing in the unit disk due to Aziz and Nisar ahmad rather [2004].

Corollary1. If P(z) is a polynomial of degree n, which does not vanish in |z| < 1 then for all real or complex α and β with $|\beta| \le 1$, $|\alpha| \le 1$ and $R \ge 1$,

$$\left| P(Rz) - P(z) + \beta \left\{ \left(\frac{R+1}{2} \right)^n - 1 \right\} P(z) \right| \le \frac{1}{2} \left[\left| R^n - 1 + \beta \left\{ \left(\frac{R+1}{2} \right)^n - 1 \right\} \right| |z|^n + \frac{1}{2} \left[\left| R^n - 1 + \beta \left\{ \left(\frac{R+1}{2} \right)^n - 1 \right\} \right] \right] |z|^n + \frac{1}{2} \left[\left| R^n - 1 + \beta \left\{ \left(\frac{R+1}{2} \right)^n - 1 \right\} \right] |z|^n + \frac{1}{2} \left[\left| R^n - 1 + \beta \left\{ \left(\frac{R+1}{2} \right)^n - 1 \right\} \right] \right] |z|^n + \frac{1}{2} \left[\left| R^n - 1 + \beta \left\{ \left(\frac{R+1}{2} \right)^n - 1 \right\} \right] |z|^n + \frac{1}{2} \left[\left| R^n - 1 + \beta \left\{ \left(\frac{R+1}{2} \right)^n - 1 \right\} \right] \right] |z|^n + \frac{1}{2} \left[\left| R^n - 1 + \beta \left\{ \left(\frac{R+1}{2} \right)^n - 1 \right\} \right] |z|^n + \frac{1}{2} \left[\left| R^n - 1 + \beta \left\{ \left(\frac{R+1}{2} \right)^n - 1 \right\} \right] \right] |z|^n + \frac{1}{2} \left[\left| R^n - 1 + \beta \left\{ \left(\frac{R+1}{2} \right)^n - 1 \right\} \right] |z|^n + \frac{1}{2} \left[\left| R^n - 1 + \beta \left\{ \frac{R+1}{2} \right\} \right] |z|^n + \frac{1}{2} \left[\left| R^n - 1 + \beta \left\{ \frac{R+1}{2} \right\} \right] |z|^n + \frac{1}{2} \left[\left| R^n - 1 + \beta \left\{ \frac{R+1}{2} \right\} \right] |z|^n + \frac{1}{2} \left[\left| R^n - 1 + \beta \left\{ \frac{R+1}{2} \right\} \right] |z|^n + \frac{1}{2} \left[\left| R^n - 1 + \beta \left\{ \frac{R+1}{2} \right\} \right] |z|^n + \frac{1}{2} \left[\left| R^n - 1 + \beta \left\{ \frac{R+1}{2} \right\} \right] |z|^n + \frac{1}{2} \left[\left| R^n - 1 + \beta \left\{ \frac{R+1}{2} \right\} \right] |z|^n + \frac{1}{2} \left[\left| R^n - 1 + \beta \left\{ \frac{R+1}{2} \right\} \right] |z|^n + \frac{1}{2} \left[\left| R^n - 1 + \beta \left\{ \frac{R+1}{2} \right\} \right] |z|^n + \frac{1}{2} \left[\left| R^n - 1 + \beta \left\{ \frac{R+1}{2} \right\} \right] |z|^n + \frac{1}{2} \left[\left| R^n - 1 + \beta \left\{ \frac{R+1}{2} \right\} \right] |z|^n + \frac{1}{2} \left[\left| R^n - 1 + \beta \left\{ \frac{R+1}{2} \right\} \right] |z|^n + \frac{1}{2} \left[\left| R^n - 1 + \beta \left\{ \frac{R+1}{2} \right\} \right] |z|^n + \frac{1}{2} \left[\left| R^n - 1 + \beta \left\{ \frac{R+1}{2} \right\} \right] |z|^n + \frac{1}{2} \left[\left| R^n - 1 + \beta \left\{ \frac{R+1}{2} \right\} \right] |z|^n + \frac{1}{2} \left[\left| R^n - 1 + \beta \left\{ \frac{R+1}{2} \right\} \right] |z|^n + \frac{1}{2} \left[\left| R^n - 1 + \beta \left\{ \frac{R+1}{2} \right\} \right] |z|^n + \frac{1}{2} \left[\left| R^n - 1 + \beta \left\{ \frac{R+1}{2} \right\} \right] |z|^n + \frac{1}{2} \left[\left| R^n - 1 + \beta \left\{ \frac{R+1}{2} \right\} \right] |z|^n + \frac{1}{2} \left[\left| R^n - 1 + \beta \left\{ \frac{R+1}{2} \right\} \right] |z|^n + \frac{1}{2} \left[\left| R^n - 1 + \beta \left\{ \frac{R+1}{2} \right\} \right] |z|^n + \frac{1}{2} \left[\left| R^n - 1 + \beta \left\{ \frac{R+1}{2} \right\} \right] |z|^n + \frac{1}{2} \left[\left| R^n - 1 + \beta \left\{ \frac{R+1}{2} \right\} \right] |z|^n + \frac{1}{2} \left[\left| R^n - 1 + \beta \left\{ \frac{R+1}{2} \right\} \right] |z|^n + \frac{1}{2} \left[\left| R^n - 1 + \beta \left\{ \frac{R+1}{2} \right\} \right] |z|^n + \frac{1}{2} \left[\left| R^n - 1 + \beta \left\{ \frac{R+1}{2} \left[\frac{R+1}{2} \right] \right] |z|^n$$

 $\beta R + 12n - 1 \max z = 1Pz - 12Rn - 1 + \beta R + 12n - 1 zn - \beta R + 12n - 1 \min z = 1Pz$, For R ≥ 1 and $|z| \ge 1$. The result is sharp and equality holds for $P(z) = z^n + 1$. (10)

Remark2. Dividing the two sides of (10) by R-1 and letting $R \rightarrow 1$, we obtain in particular, refinement of (3).

Lemma1. If F(z) is a polynomial of degree n, which does vanish in $|z| \le 1$ and P(z) is a polynomial of degree at most n such that

$$|P(z)| \le |F(z)| \quad \text{For} \quad |z| = 1$$

then for all real or complex α and β with $|\beta| \le 1$, $|\alpha| \le 1$ and $R \ge 1$,

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) An Online International Journal Available at <u>http://www.cibtech.org/jpms.htm</u> 2012 Vol. 2 (1) January-March, pp. 157-162/ Irshad Ahmad

Research Article

$$\left|P(Rz) - \alpha P(z) + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} P(z) \right| \le \left|F(Rz) - \alpha F(z) + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} F(z) \right|$$

for $|z| \ge 1$. This lemma is due to Abdul Aziz and Nisar ahmad rather.

Lemma2. If P(z) is a polynomial of degree n, which does not vanish in $|z| \le 1$ then for all real or complex α and β with $|\beta| \le 1$, $|\alpha| \le 1$ and $R \ge 1$,

$$\left| P(Rz) - \alpha P(z) + \beta \left\{ \left(\frac{R+1}{2} \right)^n - |\alpha| \right\} P(z) \right| \le \left| Q(Rz) - \alpha Q(z) + \beta \left\{ \left(\frac{R+1}{2} \right)^n - \alpha Q(z) + \beta \left\{ \left(\frac{R+1}{2} \right)^n - \alpha Q(z) + \beta R + 12n - \alpha Q(z) + 12n - \alpha Q(z) + \beta R + 12n - \alpha Q(z) + \beta R + 12n - \alpha Q(z) + 12n - \alpha Q(z) + \beta R + 12n - \alpha Q(z) + \alpha Q(z)$$

Where $Q(z) = z^n \overline{p(\frac{1}{z})}$ for $|z| \ge 1$.

Proof of lemma 2. $\min_{|z|=1} |P(z)| = m$ which implies $m \le |P(z)|$ for |z| = 1. for any real or complex λ , $|\lambda| \le 1$,

$$m\left|\lambda\right| \leq |P(z)|$$

Therefore $G(z)=P(z)+\lambda m$ does not vanish in open unit disk by Rouches theorem. If $H(z)==z^n$ $\overline{G(\frac{1}{z})} = Q(z) + \overline{\lambda}mz^n$. Then it has all zeros in $|z| \le 1$, and |G(z)| = |H(z)| on |z| = 1. Applying lemma 1 with P(z)=G(z) and F(z)=H(z) we have

$$\left| (P(Rz) + \lambda m(Rz)^n) - \alpha (P(z) + \lambda m(z)^n) + \beta \left\{ \left(\frac{R+1}{2} \right)^n - |\alpha| \right\} (P(z) + \lambda m(Rz)^n) \right|$$

$$\leq \left| (Q(Rz) + \overline{\lambda m}) - \alpha (Q(z) + \overline{\lambda m}) + \beta \left\{ \left(\frac{R+1}{2} \right)^n - |\alpha| \right\} (Q(z) + \overline{\lambda m}) \right|$$

For $|z| \ge 1$, which implies

$$\begin{vmatrix} P(Rz) - \alpha P(z) + \beta \left\{ \left(\frac{R+1}{2} \right)^n & -|\alpha| \right\} P(z) + \lambda m(z)^n \left[R^n - \alpha + \beta \left\{ \left(\frac{R+1}{2} \right)^n & -|\alpha| \right\} \right] \end{vmatrix} \le \\ \begin{vmatrix} Q(Rz) - \alpha Q(z) + \beta \left\{ \left(\frac{R+1}{2} \right)^n & -|\alpha| \right\} Q(z) \end{vmatrix} + \left| \overline{\lambda} \right| \left| 1 - \alpha + \beta R + 12n - \alpha \min z = 1 Pz \end{vmatrix}$$

For $|z| \ge 1$, further choosing argument of λ , suitably, we shall get

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) An Online International Journal Available at <u>http://www.cibtech.org/jpms.htm</u> 2012 Vol. 2 (1) January-March, pp. 157-162/ Irshad Ahmad **P**asagarah Antiolo

$$\left| P(Rz) - \alpha P(z) + \beta \left\{ \left(\frac{R+1}{2} \right)^n - |\alpha| \right\} P(z) \right| + \left| \lambda m(z)^n \left[R^n - \alpha + \beta \left\{ \left(\frac{R+1}{2} \right)^n - |\alpha| \right\} \right] \right| \le \left| Q(Rz) - \alpha Q(z) + \beta \left\{ \left(\frac{R+1}{2} \right)^n - |\alpha| \right\} Q(z) \right| + \left| \overline{\lambda} \right| \left| 1 - \alpha + \beta R + 12n - \alpha \min z = 1 Pz \right|$$

For $|z| \ge 1$.Letting $|\lambda| \to 1$, we get desired result.

Proof of theorem: Since by lemma 2, we have

$$\left| P(Rz) - \alpha P(z) + \beta \left\{ \left(\frac{R+1}{2} \right)^n - |\alpha| \right\} P(z) \right| \le \left| Q(Rz) - \alpha Q(z) + \beta \left\{ \left(\frac{R+1}{2} \right)^n - |\alpha| \right\} Q(z) \right|$$

$$\left[\left| R^n - \alpha + \beta \left\{ \left(\frac{R+1}{2} \right)^n - |\alpha| \right\} \right| |z|^n - \left| 1 - \alpha + \beta \left\{ \left(\frac{R+1}{2} \right)^n - |\alpha| \right\} \right] \right] \min_{|z|=1} |P(z)|, \text{ for } \mathbb{R}$$

$$\ge 1 \text{ and } |z| \ge 1. \text{ Where } Q(z) = z^n \overline{p} (\frac{1}{z}). \text{ Adding on both sides}$$

Adding on both sides

$$\left| P(Rz) - \alpha P(z) + \beta \left\{ \left(\frac{R+1}{2} \right)^n - |\alpha| \right\} P(z) \right|$$

And using theorem(A), we get $\left|P(Rz) - \alpha P(z) + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} P(z) \right| \le \frac{1}{2} \left[\left|R^n - \alpha + \beta R + 12n - \alpha \tan z = 1Pz - 12Rn - \alpha + \beta R + 12n - \alpha \tan z = 1Pz - 12Rn - \alpha + \beta R + 12n - \alpha \tan z = 1Pz$, for $R \ge 1$ and $z \ge 1$.

Hence the result.

REFERENCES

N.C. Ankeny and T.J. Ravin, on a theorem of S. Bernstein, Pacific Journal of Mathematics, 5(1955) 849-852.

A.Aziz and Q.G. Mohammad, simple proof of theorem of Erdös and Lax, Proceedings of American Mathematical Society, **80**(1980), 119-122.

A.Aziz and N. A. Rather, on an inequality of S. Bernstein and Gauss-Lucas theorem, Analytic and geometric inequalities and their applications, (Th.M. Rassis and H. M. Sarivastava eds.) Kluwer Academy Publication (2004).

A.Aziz and N.A.Rather, some compact generalisations of S. Bernstein –type inequalities for polynomials, Mathematical inequalities and applications, **7**,**3**(2004),393-403.

V. K. Jain, generalisation of certain well known inequalities for polynomials, Glasnik Matematicki, 32(52)(1997), 45-51.

P. D. Lax, Proof of a Conjecture of P. Erdos on the derative of a polynomial, Bulletin of . American Mathematical Society (N.S.), **50**(1944), 509-513.

G.V. Milovanoic, **D. S. Mitrinovic and Th. M. Rassias**, Topics in polynomials, Extremal problems, inequalities, zeros (Singapore: world Scientific), (1994).

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) An Online International Journal Available at <u>http://www.cibtech.org/jpms.htm</u> 2012 Vol. 2 (1) January-March, pp. 157-162/ Irshad Ahmad **P**asagarah Article

Research Article

G. Polya and G. Szego, Aufgaben and Lehrsatze aus der. Analysis (Berlin: Springer verlag)(1925).

A.C.Schaeffer, inequalities of A. Markoff and S. Bernstein for polynomials and related functions, Bull. Amer. Math. Soc.(N.S) 47(1941), 565-579.