A VAGUE SET THEORETIC TO GOAL PROGRAMMING
*Rajesh Dangwal ${ }^{1}$, M.K. Sharma ${ }^{2}$ and Padmendra Singh ${ }^{1}$
${ }^{l}$ Department of Mathematics H.N.B.Garhwal University, Campus Pauri, Uttarakhand
${ }^{2}$ Department of Mathematics R.S.S.(P.G.) College, Pilkhuwa, Ghaziabad
*Author for Correspondence

Abstract

An additive Fuzzy goal programming model was given by Tiwari et al., (1987). In their model they dealt with the achievement of goals by using membership function for each goal. This approach of solving the problem considers only the favourable aspect of belongingness. It would be more realistic if the achievement of goals be viewed by considering all arguments, that may favour or disfavour the achievement of goal. This leads to changing the fuzzy set theoretic approach to vague set theory. Present paper provides a goal programming model using vague set theory. The process of solution is illustrated using the example of Tiwari et al., (1987). It has been observed that the achievements of goals by our method are more close to the aspiration level.

INTRODUCTION

Goal programming (GP) is a multi-criteria decision making technique which applies in many real world problems in a precise manner. Goal programming is an extension of linear programming to include multiple objectives. In FGP, each objective function should be substantially less than or equal to same value, called aspiration level. Often, in real world problems, aspiration levels and/or priority factors of the DM, some time even the weights to be assigned to the goals are not assigned in precise manner. To overcome this ambiguity, Fuzzy set theory plays an important role.
Narasimhan (1980, 1981), Hannan, (1981, 1981,1982) Narasomhan, (1981), Ignizio (1982), Rubin and Narasimhan (1984) and Tiwari et. al. $(1986,1987)$ are those persons which use fuzzy set theory in Goal programming and investigated various aspects of decision problems using FGP.
In FGP, for each of the objective function assume that the DM has a fuzzy goal such as "objective function should be substantially less than or equal to aspiration level". So, DM takes a linear membership function for each fuzzy goal.
In this present paper, we investigate a particular modelling in which for each goal, we investigate nonmembership function as mellas membership function and show that sum of non-membership function and membership function for each goal is less than or equal to 1 .
In conventional GP the simple additive model for m goal $\mathrm{S} \mathrm{G}_{\mathrm{i}}(\mathrm{X})$ with deviational variability's $\mathrm{d}_{\mathrm{i}}{ }^{+}, \mathrm{d}_{\mathrm{i}}{ }^{-}$is defined as
$\operatorname{minimize} \sum_{i=1}^{m}\left(d_{i}^{+}+d_{i}^{-}\right)$
subject to $\sum G_{i}(X)+d_{i}{ }^{-}-d_{i}^{+}=g_{i}$
$d_{i}^{+}, d_{i}^{-}=0$
$d_{i}^{+}, d_{i}^{-}, x \geq 0, i=1,2 \ldots m$
where g_{i} is the aspiration level of the goal. Here we develop a similar model using membership function and non-membership function. Instead of deviational variables. So far, we had an additive model in the research paper Tiwari et. al., in which we use membership functions only.
Consider the FGP problem:
Find X
to satisfy $\quad G_{i}(X) \geq g_{i}, i=1,2,3, \ldots \ldots \ldots m$

Research Article

subject to $A X \leq B, X \geq 0$
Where x is an n -vector with components $\mathrm{x}_{1}, \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{n}}$ and $A X \leq B$, are system constraints in vector notation.
A linear membership function μ_{i} for the $\mathrm{i}^{\text {th }}$ fuzzy goal $G_{i}(X) \geq g_{i}$ can be expressed as

$$
\mu_{i}=\left\{\begin{array}{l}
1 \text { if } G_{i}(X) \geq g_{i}, \\
\frac{G_{i}(X)-L_{i}}{g_{i}-L_{i}} \text { if } L_{i} \leq G_{i}(X) \leq g_{i} \\
0 \quad \text { if } G_{i}(X) \leq L_{i}
\end{array}\right.
$$

where L_{i} is the lower tolerance limit for the fuzzy goal $G_{i}(x)$.
The non-membership function v_{i} for that goal is

$$
v_{i}=\left\{\begin{array}{l}
0 \text { if } G_{i}(X) \geq g_{i}, \\
\frac{g_{i}-G_{i}(X)}{g_{i}-L_{i}^{\prime}} \text { if } L_{i}^{\prime} \leq G_{i}(X) \leq g_{i} \\
1 \quad \text { if } G_{i}(X) \leq L_{i}^{\prime}
\end{array}\right.
$$

Where $L_{i}^{\prime} \leq \mathrm{L}_{\mathrm{i}}$
Now,

$$
\begin{aligned}
& \frac{G_{i}(x)-L_{i}}{g_{i}-L_{i}}+\frac{g_{i}-G_{i}(x)}{g_{i}-L_{i}^{\prime}} \\
& =\frac{\left(g_{i}-L_{i}^{\prime}\right)\left(G_{i}(x)-L_{i}\right)+\left(g_{i}-G_{i}(x)\right)\left(g_{i}-L_{i}\right)}{\left(g_{i}-L_{i}\right)\left(g_{i}-L_{i}^{\prime}\right)} \\
& =\frac{\left.g_{i} G_{i}-g_{i} L_{i}-L_{i}^{\prime} G_{i}+L_{i} L_{i}^{\prime}+g_{i}^{2}-L_{i} g_{i}-G_{i} g_{i}+G_{i} L_{i}\right)}{\left(g_{i}-L_{i}\right)\left(g_{i}-L_{i}^{\prime}\right)} \\
& =\frac{\left.g_{i}^{2}-2 L_{i} g_{i}+\left(L_{i}-L_{i}^{\prime}\right) G_{i}+L_{i}^{\prime} L_{i}^{\prime}\right)}{\left(g_{i}-L_{i}\right)\left(g_{i}-L_{i}^{\prime}\right)} \\
& =\frac{g_{i}\left(g_{i}-L_{i}\right)-L_{i}\left(g_{i}-L_{i}^{\prime}\right)+G_{i}\left(L_{i}-L_{i}^{\prime}\right)}{\left(g_{i}-L_{i}\right)\left(g_{i}-L_{i}^{\prime}\right)}
\end{aligned}
$$

Taking $L_{i}=L_{i}^{\prime}+a$, where $a \geq 0$, then

$$
\begin{aligned}
& =\frac{g_{i}\left(g_{i}-L_{i}\right)-L_{i}\left(g_{i}-L_{i}+a\right)+G_{i}\left(L_{i}-L_{i}+a\right)}{\left(g_{i}-L_{i}\right)\left(g_{i}-L_{i}^{\prime}\right)} \\
& =\frac{g_{i}\left(g_{i}-L_{i}\right)-L_{i}\left(g_{i}-L_{i}\right)-L_{i} a+a G_{i}}{\left(g_{i}-L_{i}\right)\left(g_{i}-L_{i}^{\prime}\right)} \\
& =\frac{\left(g_{i}-L_{i}\right)\left(g_{i}-L_{i}\right)+a\left(G_{i}-L_{i}\right)}{\left(g_{i}-L_{i}\right)\left(g_{i}-L_{i}^{\prime}\right)}
\end{aligned}
$$

Since $\left(G_{i}-L_{i}\right) \leq\left(g_{i}-L_{i}\right)$, So, we have

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online)
An Online International Journal Available at http://www.cibtech.org/jpms.htm
2011 Vol. 1 (1) October-December, pp.80-85/Dangwal et al.

Research Article

$$
\begin{aligned}
& \leq \frac{\left(g_{i}-L_{i}\right)\left(g_{i}-L_{i}\right)+a\left(g_{i}-L_{i}\right)}{\left(g_{i}-L_{i}\right)\left(g_{i}-L_{i}+a\right)} \\
& =\frac{\left(g_{i}-L_{i}\right)\left(g_{i}-L_{i}+a\right)}{\left(g_{i}-L_{i}\right)\left(g_{i}-L_{i}+a\right)} \\
& =1
\end{aligned}
$$

For goal $G_{i}(x) \leq g_{i}$, we have

$$
\mu_{i}=\left\{\begin{array}{llc}
1 & \text { if } & G_{i}(x) \leq g_{i} \\
\frac{U_{i}-G_{i}}{U_{i}-g_{i}} & \text { if } & g_{i} \leq G_{i}(x) \leq U_{i} \\
0 & \text { if } & G_{i}(x) \geq U_{i}
\end{array}\right.
$$

The non-membership function is

$$
v_{i}=\left\{\begin{array}{lll}
0 & \text { if } & G_{i}(x) \leq g_{i} \\
\frac{G_{i}-g_{i}}{U_{i}^{\prime}-g_{i}} & \text { if } & g_{i} \leq G_{i}(x) \leq U_{i}^{\prime} \\
1 & \text { if } & G_{i}(x) \geq U_{i}^{\prime}
\end{array}\right.
$$

Where $U_{i} \leq U_{i}^{\prime}$, take $U_{i}^{\prime}=U_{i}+b, b \geq 0$
Now,

$$
\begin{aligned}
& \frac{U_{i}-G_{i}}{U_{i}-g_{i}}+\frac{G_{i}-g_{i}}{U_{i}^{\prime}-g_{i}} \\
& =\frac{\left(U_{i}-G_{i}\right)\left(U_{i}^{\prime}-g_{i}\right)+\left(G_{i}-g_{i}\right)\left(U_{i}-g_{i}\right)}{\left(U_{i}-g_{i}\right)\left(U_{i}^{\prime}-g_{i}\right)} \\
& =\frac{U_{i} U_{i}^{\prime}-U_{i} g_{i}-G_{i} U_{i}^{\prime}+G_{i} g_{i}+G_{i} U_{i}-G_{i} g_{i}-g_{i} U_{i}+g_{i}^{2}}{\left(U_{i}-g_{i}\right)\left(U_{i}^{\prime}-g_{i}\right)} \\
& =\frac{g_{i}\left(g_{i}-U_{i}\right)-U_{i}\left(g_{i}-U_{i}^{\prime}\right)+G_{i}\left(U_{i}-U_{i}^{\prime}\right)}{\left(U_{i}-g_{i}\right)\left(U_{i}^{\prime}-g_{i}\right)} \\
& =\frac{g_{i}\left(g_{i}-U_{i}\right)-U_{i}\left(g_{i}-\left(U_{i}+b\right)\right)+G_{i}\left(U_{i}-\left(U_{i}-b\right)\right)}{\left(U_{i}-g_{i}\right)\left(U_{i}^{\prime}-g_{i}\right)} \\
& =\frac{\left.g_{i}\left(g_{i}-U_{i}\right)-U_{i}\left(g_{i}-U_{i}-b\right)+G_{i}\left(U_{i}-U_{i}-b\right)\right)}{\left(U_{i}-g_{i}\right)\left(U_{i}^{\prime}-g_{i}\right)} \\
& =\frac{\left(U_{i}-g_{i}\right)^{2}+U_{i} b-G_{i} b}{\left(U_{i}-g_{i}\right)\left(U_{i}^{\prime}-g_{i}\right)} \\
& =\frac{\left(U_{i}-g_{i}\right)^{2}+\left(U_{i}-G_{i}\right) b}{\left(U_{i}-g_{i}\right)\left(U_{i}^{\prime}-g_{i}\right)}
\end{aligned}
$$

Research Article

Since $U_{i}-G_{i} \leq U_{i}-g_{i}$, So, we have

$$
\Rightarrow G_{i}-U_{i} \geq g_{i}-U_{i}
$$

$\leq \frac{\left(U_{i}-g_{i}\right)^{2}+\left(U_{i}-g_{i}\right) b}{\left(U_{i}-g_{i}\right)\left(U_{i}-g_{i}+b\right)}$
$=\frac{\left(U_{i}-g_{i}\right)\left(U_{i}-g_{i}+b\right)}{\left(U_{i}-g_{i}\right)\left(U_{i}-g_{i}+b\right)}$
$=1$.

NUMERICAL EXAMPLE

Let us consider a mathematical model of the problem having 5 fuzzy goals with 4 variables and 4 system constraints as follows:
Find X satisfying the following fuzzy goals:
$4 x_{1}+2 x_{2}+8 x_{3}+x_{4} \leq 35$
$4 x_{1}+7 x_{2}+6 x_{3}+2 x_{4} \geq 100$
$x_{1}-6 x_{2}+5 x_{3}+10 x_{4} \geq 120$
$5 x_{1}+3 x_{2}+2 x_{4} \geq 70$
$4 x_{1}+4 x_{2}+4 x_{3} \geq 40$
S.t.,

$$
\begin{align*}
& 7 x_{1}+5 x_{2}+3 x_{3}+2 x_{4} \leq 98 \\
& 7 x_{1}+x_{2}+6 x_{3}+6 x_{4} \leq 117 \\
& x_{1}+x_{2}+2 x_{3}+6 x_{4} \leq 130 \tag{4}\\
& 9 x_{1}+x_{2}+6 x_{4} \leq 105 \\
& \quad x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{align*}
$$

Let the tolerance limits of the 5 goals be $(55,40,70,30,10)$ respectively. Now, the fuzzy goals are converted into crisp ones by using membership functions μ_{i} as defined in (2.1, 2.3). Thus this problem reduces to
$\max V(\mu)=\sum_{i=1}^{5} \mu_{i}$
S. t. $\quad \mu_{1}=\frac{55-\left(4 x_{1}+2 x_{2}+8 x_{3}+x_{4}\right)}{20}$

$$
\Rightarrow \quad 4 x_{1}+2 x_{2}+8 x_{3}+x_{4}+20 \mu_{1}=55
$$

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online)
An Online International Journal Available at http://www.cibtech.org/jpms.htm
2011 Vol. 1 (1) October-December, pp.80-85/Dangwal et al.

Research Article

$\mu_{2}=\frac{4 x_{1}+7 x_{2}+6 x_{3}+2 x_{4}-40}{60}$
$\Rightarrow 4 x_{1}+7 x_{2}+6 x_{3}+2 x_{4}-60 \mu_{2}=40$
$\mu_{3}=\frac{x_{1}-6 x_{2}+5 x_{3}+10 x_{4}-70}{50}$
$\Rightarrow x_{1}-6 x_{2}+5 x_{3}+10 x_{4}-50 \mu_{3}=70$
$\mu_{4}=\frac{5 x_{1}+3 x_{2}+2 x_{4}-30}{40}$
$\Rightarrow 5 x_{1}+3 x_{2}+2 x_{4}-40 \mu_{4}=30$
$\mu_{5}=\frac{4 x_{1}+4 x_{2}+4 x_{3}-10}{30}$
$\Rightarrow 4 x_{1}+4 x_{2}+4 x_{3}-30 \mu_{5}=10$,
$7 x_{1}+5 x_{2}+3 x_{3}+2 x_{4} \leq 98$
$7 x_{1}+x_{2}+6 x_{3}+6 x_{4} \leq 117$
$x_{1}+x_{2}+2 x_{3}+6 x_{4} \leq 130$
$9 x_{1}+x_{2}+6 x_{4} \leq 105$
and $\mu_{i} \leq 1$
$\mathrm{x}_{\mathrm{j}}, \mu_{i} \geq 0, i=1,2, \ldots .5, j=1,2 \ldots \ldots 4$.
Introducing slack variables, then
$7 x_{1}+5 x_{2}+3 x_{3}+2 x_{4}+x_{5}=98$
$7 x_{1}+x_{2}+6 x_{3}+6 x_{4}+x_{6}=117$
$x_{1}+x_{2}+2 x_{3}+6 x_{4}+x_{7}=130$
$9 x_{1}+x_{2}+6 x_{4}+x_{8}=105$
$\mu_{1}+x_{9}=1, \mu_{2}+x_{10}=1, \mu_{3}+x_{11}=1$
$\mu_{4}+x_{12}=1, \mu_{5}+x_{13}=1$
All $x_{i} \geq 0, \mu_{i} \geq 0$
This problem is solved by 'TORA' software we have the results as
$x_{1}=0, x_{2}=9.75, x_{3}=0, x_{4}=15.875$
with achieved Goal values

$$
G_{1}=35.375, G_{2}=100.0, G_{3}=100.25, G_{4}=61.0, G_{5}=39.0
$$

and membership values

$$
\mu_{1}=0.981, \mu_{2}=1.00, \mu_{3}=0.605, \mu_{4}=0.775, \mu_{5}=0.967
$$

For nonmembership functions
$\operatorname{Max} \mathrm{V}(v)=\sum_{i=1}^{5}(1-v i)$

Research Article

Subject to
$4 x_{1}+2 x_{2}+8 x_{3}+x_{4}-25 v_{1}=35$
$4 x_{1}+7 x_{2}+6 x_{3}+2 x_{4}+65 v_{2}=100$
$x_{1}-6 x_{2}+5 x_{3}+10 x_{4}+55 v_{3}=120$
$5 x_{1}+3 x_{2}+2 x_{4}+45 v_{4}=70$
$4 x_{1}+4 x_{2}+4 x_{3}+35 v_{5}=40$
$7 x_{1}+5 x_{2}+3 x_{3}+2 x_{4}+x_{5}=98$
$7 x_{1}+x_{2}+6 x_{3}+6 x_{4}+x_{6}=117$
$x_{1}+x_{2}+2 x_{3}+6 x_{4}+x_{7}=130$
$9 x_{1}+x_{2}+6 x_{4}+x_{8}=105$
$v_{1}+x_{4}=1, v_{2}+x_{10}=1$,
$v_{3}+x_{11}=1, v_{4}+x_{12}=1$,
$v_{5}+x_{13}=1$
All $\mathrm{x}_{\mathrm{i}} \geq 0$ and $\mathrm{v}_{\mathrm{i}} \geq 0$
The solution is
$\mathrm{x}_{1}=0, \mathrm{x}_{2}=9.75, \mathrm{x}_{3}=0, \mathrm{x}_{4}=15.884$
With achieved goal values
$\mathrm{G}_{1}=35.384, \mathrm{G}_{2}=100.018, \mathrm{G}_{3}=100.34$
$\mathrm{G}_{4}=61.018, \mathrm{G}_{5}=39.0$
and non-membership values
$\mathrm{v}_{1}=.01, \mathrm{v}_{2}=0, \mathrm{v}_{3}=.36, \mathrm{v}_{4}=.20, \mathrm{v}_{5}=.03$

REFERENCES

Hannan E.L. (1981). Linear programming with multiple fuzzy goals, Fuzzy Sets and Systems. 6 235248.

Hannan E.L. (1981). On fuzzy goal programming. Decision Sciences. 12 522-531.
Hannan E.L.(1982). Contrasting fuzzy goal programming and fuzzy multi criteria programming. Decision Sciences. 13 337-339.
Ignizio J.P. (1982) On the (re) discovery of fuzzy goal programming. Decision Sciences. 13 331-336.
Narasimhan R.(1980). Goal programming in a fuzzy environment. Decision Sciences. 11 325-336.
Narasimhan R. (1981). On fuzzy goal programming-some Comments. Decision Sciences. 12 532-538.
Rubin P.A. and Narasimhan R. (1984). Fuzzy goal programming with nested priorities. Fuzzy Sets and Systems 14 115-129.
Tiwari R.N., Dharmar S (1986). Rao J.R., Priority structure in fuzzy goal programming. Fuzzy Sets and Systems 19 251-259.
Tiwari R.N., Dharmar S. and Rao J.R. (1987). Fuzzy goal programming An additive model. Fuzzy Sets and Systems 24 27-34.
Zadeh L.A. (1965). Fuzzy Sets. Information and Control. 8 338-353.
Zimmermann H.J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems 1 45-55.

