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ABSTRACT 
A theorem on index summability factors of Fourier Series has been established. 
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INTRODUCTION  

Let  na   be a given infinite series with the sequence of partial sums {Sn}. Let {pn} be a 
sequence of positive numbers such that 
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defines the sequence of the ),( npN mean of the sequence }{ ns generated by the sequence of 

coefficients }{ np . 

The series  na is said to be summable 1,, kpN
kn , if   
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When 
knn pNkandnallforp ,,11   summability is same as 1,C  summability.For 

knpNk ,,1  summability is same as npN , - summability. 

The series  na is said to be summable ,;,
knpN  0,1  k ,if 
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When
knpN  ;,,0,0  -summability is the same as knpN , -summability.  

The series  na is said to be summable 1,;, 
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In the case when ,
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;, - summability is same as 

knpN ;, summability. 

Let  tf  be a periodic function with period 2  and integrable in the sense of Lebesgue 
over   , . Without loss of generality, we may assume that the constant term in the Fourier series of 

)(tf  is zero, so that 

(1.6)                 )(tf ~ )()sincos(
11
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Known Theorem: 
 Dealing with 1,, kpN

kn , summability factors of Fourier series, Bor [1] proved the following 
theorem: 
Theorem-A:  

If  n  is a non-negative and non-increasing sequence such that  nnp  , where  np  is a 

sequence of positive numbers such that  nasPn  and



n

v
nvv PtAP

1
)(0)( . Then the factored 

Fourier series  nnn PtA )(  is summable 1,, kpN
kn . 

  We prove an analogue theorem on 
knpN , - summability, 1k , in the following form: 

Main Theorem:  
        Let  np  is a sequence of positive numbers as defined in (1.2) such that 

 nn pppP ....21  as n  and n  is a non-negative, non-increasing sequence such 

that  nnp   . If 
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(3.2)  (ii).      
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Required Lemma: 
We need the following Lemma for the proof of our theorem. 

 
Lemma [1]:  

If  n  is a non-negative and non-increasing sequence such that  nnP  , where  np  is a 

sequence of positive numbers such that  nasPn  then  nasP nn )1(0  and 

  nnP  . 
Proof of the Theorem: 

Let )(xtn  be the n-th  npN ,  mean of the series ,)(
1



n
nnn PxA   then by definition  

we have 
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               4,3,2,1, nnnn TTTT  , say. 
In order to complete the proof of the theorem, using Minkowski’s inequality, it is sufficient to show that  
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Now, we have 
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This completes the proof of the theorem. 
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