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ABSTRACT 
In this paper, we study the steady and unsteady magneto hydro dynamic (MHD) viscous, incompressible 
free and forced convective flow of an electrically conducting Newtonian fluid through a porous medium 
in the presence of appreciable thermal radiation heat transfer and surface temperature oscillation taking 
hall current into account. The fluid is assumed to be optically-thin and magnetic Reynolds number small 
enough to neglect induced hydro magnetic effects. Secondary (cross-flow) effects are incorporated. The 
governing equations are solved analytically using complex variables. Detailed computations of the 
influence of governing parameters on the unsteady mean flow velocity (u1) and unsteady mean cross flow 
velocity (w1), the plate shear stresses for the unsteady main and the secondary flow and also temperature 
gradients due to the unsteady main flow and the unsteady cross flow, are presented graphically and 
tabulated. The closed-form solutions reveal that the shear stress component due to a steady mean flow 
experiences a non-periodic oscillation which varies as a function of the Hartmann number (M2) and 
radiation parameter (K1). However the shear stress components due to main and cross flows for an 
unsteady mean flow are subjected to periodic oscillation which depends on Hartmann number, inverse 
Darcy parameter, radiation parameter but also on the Prandtl number and frequency of oscillation. 
Applications of the model include fundamental magneto-fluid dynamics, MHD energy systems and 
magneto-metallurgical processing for aircraft materials.  
 
Key Words: Steady and Unsteady Flows, Thermal Radiation Heat Transfer, Free and Forced Convective 

Flows, Surface Temperature Oscillation and Porous Medium 
 
INTRODUCTION 
Several authors have considered thermal radiation effects on convection flows with and without magnetic 
fields. A seminal study was communicated by Audunson and Gebhart (1972) who also presented rare 
experimental data for radiation-convection boundary layer flows of air, argon and ammonia, showing that 
thermal radiation increases convective heat transfer by up to 40 %. Larson and Viskanta (1976) 
investigated experimentally the unsteady natural convection-radiation in a rectangular enclosure for the 
case of fire-generated thermal radiative flux, showing that thermal radiation dominates the heat transfer in 
the enclosure and alters the convective flow patterns substantially. Helliwell and Mosa (1979) reported on 
thermal radiation effects in buoyancy-driven hydro magnetic flow in a horizontal channel flow with an 
axial temperature gradient in the presence of Joule and viscous heating. Bestman (1989) studied magneto 
hydro dynamic rarefied oscillatory heat transfer from a plate with significant thermal radiation using a 
general differential approximation for radiation flux and perturbation methods for small amplitude 
oscillations. Yasar and Moses (1992) developed a one-dimensional adaptive-grid finite-differencing 
computer code for thermal radiation magneto hydro dynamic (RMHD) simulations of fusion plasmas. 
Alagoa et.al (1998) studied magneto hydro dynamic optically-transparent free-convection flow, with 
radiative heat transfer in porous media with time-dependent suction using an asymptotic approximation, 
showing that thermal radiation exerts a significant effect on the flow dynamics. El-Hakiem (2000) 
analyzed thermal radiation effects on transient, two dimensional hydro magnetic free convection along a 
vertical surface in a highly porous medium using the Rosseland diffusion approximation for the radiative 
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heat flux in the energy equation, for the case where free-stream velocity of the fluid vibrates about a mean 
constant value and the surface absorbs the fluid with constant velocity. Israel-Cookey et al. (2003) 
described the effects of viscous dissipation and thermal radiation on transient magneto hydro dynamic 
free-convection flow past an infinite vertical heated plate in an optically thin environment with time-
dependent suction showing that increased cooling (positive Grashof number) of the plate and increasing 
Eckert number boost velocity profile and temperature, a rise in magnetic field, thermal radiation and 
Darcian drag force decelerate the flow and increasing thermal radiation and magnetic field cool the flow 
in the porous medium. Other excellent studies of thermal radiation-convection magneto hydro dynamics 
include Duwairi and Damseh (2004), Raptis et.al (2004) who considered axi-symmetric flow and Duwairi 
and Duwairi (2005) who studied thermal radiation heat transfer effects on the hydro magnetic Rayleigh 
flow of a gray viscous fluid. Vasil’ev and Nesterov (2005) who presented a two dimensional numerical 
model for radiative-convective heat transfer in the channel of an MHD generator with a self-sustaining 
current layer. Duwairi (2005) considered Ohmic and viscous dissipation effects on thermal radiating 
hydro magnetic convection. Ouaf (2005) has considered thermal radiation effects on hydro magnetic 
stretching porous sheet flow. Aboeldahab and Azzam (2005) have described the effects of magnetic field 
on hydro magnetic mixed free-forced heat and mass convection of a gray, optically-thick, electrically-
conducting viscous fluid along a semi-infinite inclined plate for high temperature and concentration using 
the Rosseland approximation. Zueco (2007) has modeled using the network simulation technique, the 
collective effects of wall transpiration, thermal radiation and viscous heating effects on hydro magnetic 
unsteady free convection flow over a semi-infinite vertical porous plate for a non-gray fluid (absorption 
coefficient dependent on wave length). Alam et al. (2008) have very recently investigated the influence of 
thermal radiation, variable suction and thermo phoretic particle deposition on steady hydro magnetic free-
forced convective heat and mass transfer flow over an infinite permeable inclined plate using the 
Nachtsheim–Swigert shooting iteration technique and a sixth-order Runge-Kutta integration scheme. 
Ghosh and Pop (2007) have studied thermal radiation of an optically-thick gray gas in the presence of 
indirect natural convection showing that the pressure rise region leads to increase in the velocity with an 
increase of radiation parameter. Recently Anwerbeg and Ghosh (2010) investigated hydro magnetic free 
and forced convection of an optically-thin gray gas from vertical flat plate subject to a surface 
temperature oscillation with significant thermal radiation. In this paper, we study the steady and unsteady 
magneto hydro dynamic viscous, incompressible free and forced convective flow of an electrically 
conducting Newtonian fluid through a porous medium in the presence of appreciable thermal radiation 
heat transfer and surface temperature oscillation. 
Formulation and Solution of the Problem 
We consider a two dimensional unsteady MHD flow of a viscous incompressible electrically conducting 
fluid occupying a semi infinite region of space bounded by porous medium through an infinite vertical 
plate moving with the constant velocity U, in the presence of a transverse magnetic field. The surface 
temperature of the plate oscillates with small amplitude about a non-uniform mean temperature. The co-
ordinate system is such that the x-axis is taken along the plate and y-axis is normal to the plate. A uniform 
transverse magnetic field Bo is imposed parallel to y-direction. All the fluid properties are considered 
constant except the influence of the density variation in the buoyancy term, according to the classical 
Boussinesq approximation. The radiation heat flux in the x-direction is considered negligible in 
comparison to the y-direction. The unsteady MHD equation governing the fluid through a porous 
medium under the influence of transverse magnetic field with buoyancy force, then takes the vectorial 
form,  
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The equation of continuity is  
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0.  q                                         (2.2) 
Ohm’s law for a moving conductor states  

 BqEJ                                          (2.3) 
Maxwell’s electromagnetic field equations are  

JB e (Ampere’s Law)                                      (2.4) 

t

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B

E (Faraday’s Law)                                                  (2.5) 

0B .  (Solenoidal relation i.e., magnetic field continuity)                                 (2.6)  
0J .  (Gauss’s Law i.e., Conservation of electric charge)                                 (2.7) 

In which EB,q, and J are, respectively ,the velocity vector, magnetic field vector, electric field vector 
and current density vector, T is the temperature of the fluid, T is the temperature far away the plate , g  is 
the gravitational acceleration ,  is the coefficient of volume expansion,  is the density of fluid,   is 
the electrical conductivity, e  is the magnetic permeability of the fluid, t  is time, v  is dynamic viscosity 
and Bo is the magnetic flux density component normal to the plate surface . According to Shercliff  (1965) 
and Hughes and young (1966), the following assumptions are compatible with the fundamental equations 
(2.1) to (2.7) of magneto hydro dynamics. 

  zx BBBw0u ,,),,,( 0 Bq                                      (2.8) 

 zxzyx J0JEEE ,,),,,(  JE                                                  (2.9) 
Where, u and w are the velocity components along the x-direction and z-direction respectively. 

Since magnetic Reynolds number is very small for metallic liquid or partially ionized fluid the induced 
magnetic field produced by the electrically conducting fluid is negligible. Also as no external electric 
field is applied, the polarization voltage is negligible so that following Meyer (1958), E=0. Ohmic and 
viscous heating effects are also neglected. The appropriate boundary conditions to be satisfied by 
equations (2.1) and (2.3) are 

;0'),1)((,0', ''   yatexwTTΦwUu' ti  
;y'at0Φ0,w'0,u'                                        (2.10) 

Where Φ  designated wall-free stream temperature difference, 
v
U

  i.e dimensionless velocity 

ratio and   is the frequency of oscillation in the surface temperature of the plate. The conditions (2.10) 
suggest solutions to equations (2.1) to (2.3) for the variables Φ  of the form, 
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For the case of an optically-thin gray gas, the thermal radiation flux gradient may be expressed as 
follows (Siegel and Howell, 1993) 
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and rq is the radiative heat flux, a  is absorption coefficient of the fluid and  * is the Stefan-
Boltzmann constant. We assume that the temperature differences within the flow are sufficiently small 
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such that 4'T  may be expressed as a linear function of the temperature. This is accomplished by 
expanding 4'T  in a Taylor series about 'T and neglecting higher order terms, leading to: 

 
43

4 '3''4'
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The components '
0u , '

0w  and '
0 represent the steady mean flow and temperature fields, and satisfy the 

following equations: 
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Where K designates thermal conductivity and cp is the specific heat capacity under constant 
pressure. The corresponding boundary conditions are 

w00 TT0,'wU,'u    at  0'y                     (2.20) 

  TT0,'w0,'u 00  at  'y                                (2.21) 

The components 'u1 , 'w1 and 1θ  represent the steady mean flow and temperature fields, and 
satisfying the following equations: 
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The corresponding boundary conditions are 

w11 TT0,'wU,'u    at  0'y                       (2.26) 

 TT0,'w0,'u 11   at  'y                      (2.27) 
Proceeding with the analysis we introduce dimensionless quantities to normalize the flow model: 
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Where Gr is Grashof number, 2M  is the Hartmann (magneto hydro dynamic) number, K1 is the 
thermal radiation-conduction number, K is thermal conductivity and 1  is dimensionless temperature D-1 
is the inverse Darcy parameter.  

Using equation (2.25) together with the equations (2.14) and (2.15) the dimensionless form of 
equation (2.19) becomes: 

0θK
dy
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012
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                          (2.28) 

Making use of non-dimensional variables, together with equations (2.14) and (2.15) the 
dimensionless form of equation (2.25) becomes: 
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We are introducing complex variables       
F,iwu 00                           (2.30) 
Hiwu 11                           (2.31) 

where 1i .  
Combining equations (2.17) and (2.18) with the help of (2.30), the differential equation for steady 

mean flow in dimensionless form becomes: 
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Combing equations (2.23) and (2.24) with the help of (2.31), the differential equation for 
unsteady mean flow in dimensionless form reduces to: 
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The corresponding boundary conditions for steady mean flow (non-dimensional) are 
1θ0,w1,u 000    at   0y                                   (2.34) 
0θ0,w0,u 000     at  y                                  (2.35) 

The corresponding boundary conditions for unsteady mean flow (non-dimensional) are 
1θ0,w1,u 111  ,               at   0y                      (2.36) 
1θ0,w1,u 111  ,         at y                     (2.37) 

The boundary conditions (2.34), (2.35), (2.36) and (2.37) can be written subject to equation (2.30 and 
2.31) as follows: 

1F  , 1θ0     at  0y                      (2.38) 

0F  , 0θ0     at  y                     (2.39) 
and 

1,H   1θ1     at 0y                       (2.40) 
0,H  0θ1      at y                      (2.41) 

Equations (2.32) and (2.28) subjects to the boundary conditions (2.38) and (2.39) can be solved 
and the solution for the steady mean flow can be expressed as: 
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in which 
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e 1
 = (y)θ0 .  

Equations (2.32) and (2.29) subjects to the boundary conditions (2.40) and (2.41) may also be 
solved yielding the following solution for unsteady mean flow: 
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Where, the functions 0θ and 1 denote the temperature fields due to the main flow and cross 
flows, respectively. 

Of interest in practical MHD plasma energy generator design are the dimensionless shear stresses 
at the plate, which may be defined for steady and unsteady mean flow, respectively as follows: 
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It is evident from equations (2.44) and (2.45) that the shear stress component due to the main 
flow for the steady mean flow equations (2.44) and the shear stress components due to main and cross 
flows given by equation (2.45) do not vanish at the plate. Inspection of these expressions also reveals that 
the shear stress component as defined by equation (2.44) due to a steady mean flow is subjected to a non-
periodic oscillation that depends on Hartmann number, inverse Darcy parameter and radiation- 
conduction parameter. In contrast to this, the shear stress components as computed in equation (2.45) due 
to the main and cross flows for an unsteady mean flow are subjected to periodic oscillation which is a 
function of not only Hartmann number and radiation- conduction parameter, but also the Prandtl number 
and the frequency of oscillation. The shear stress for equation (2.44) will vanish at the plate (y=0) at a 
critical value of the free convection parameter i.e. Grashof number, defined by the condition: 

)12
1

12
Crit DMK(DMGr                        (2.46) 

The shear stress for equation (2.44) will vanish at the plate (y=0) when 
    212111Crit DDiCC)iD(CGr                                 (2.47) 

Also of interest in plasma MHD generator design is the dimensionless temperature gradient at the 
plate. This can be shown to take the form, for the unsteady main flow, as follows 

10y
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                                    (2.48) 

For the unsteady cross flow the dimensionless temperature gradient at the plate (y=0) is  

PriK0y|dy
dθ

1
1                                     (2.49) 

Comparing equations (2.47) and (2.48) it is immediately deduced that in the absence of an 
oscillating surface i.e., for  =0, the dimensionless temperature gradient due to a steady and unsteady 
mean follows are identical. 
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RESULTS AND DISCUSSION 
The flow governed by the non-dimensional parameters Hartmann number M, inverse Darcy parameter   
D-1, K1 is the thermal radiation-conduction number, surface temperature oscillation  i.e  and  Grashof 
number Gr. Selected computations for the velocity and temperature fields have been provided in figures 
(1-14) & (15-21) respectively. Default values of the dimensionless thermo-physical parameters were 
specified as follows, unless otherwise indicated: M = 2, K1 = 1, = 2, Gr = 2 and Pr = 0.025 which 
correspond to weak free convection currents in liquid metal flow under strong magnetic field with equal 
thermal radiation and thermal conduction contribution, with surface temperature oscillation. 
Computations for the shear stresses at the plate are provided in tables (1-3) and for temperature gradient 
at the plate in tables (4-7).   
We note that steady mean flow is simulated for which there will be no surface temperature oscillation i.e. 
  = 0. The magnitude of the velocity reduces with increase in the intensity of the magnetic field. i.e., 
Mean flow velocity, (u0) is continuously reduced with increasing M. The transverse magnetic field 
generates a retarding body force in the opposite direction to the flow which serves to decelerate the flow. 
As such magnetic field is an effective regulatory mechanism for the regime (Fig. 1). The magnitude of the 
velocity (u0) reduces with increase in the inverse Darcy parameter D-1. Lower the permeability of the 
porous medium lesser the fluid speed in the entire fluid region (Fig. 2). An increase in radiation-
conduction number, K1  has an adverse effect on the velocity due to steady mean flow (u0) for all values of 
y. K1 represents the relative contribution of thermal radiation heat transfer to thermal conduction heat 
transfer. For    K1 < 1 thermal conduction exceeds thermal radiation and for K1 > 1 this situation is 
reversed. For K1 = 1 the contribution from both modes is equal. In all cases steady mean flow velocity is a 
maximum at the plate (y = 0) and decays smoothly to the lowest value far from the plate (Fig. 3). 
Conversely an increase in free convection parameter, Grashof number Gr, boosts the steady mean flow 
velocity, (u0). Increasing thermal buoyancy (Fig. 4) therefore accelerates the mean steady flow in 
particular at and near the plate surface.  
Figures (5 to 14) correspond to the unsteady mean flow distributions due to the main flow (u1) and also 
cross flow (w1). The frequency of oscillation is prescribed as 2 unless otherwise indicated. Magnetic field 
effects on the unsteady mean main flow velocity component (u1) and the unsteady mean cross flow 
velocity component (w1), respectively, are presented in figures 5 and 10. The magnitude of the velocity 
(u1)  is strongly reduced with increase in the intensity of the magnetic field parameter M, with the 
maximum effect sustained at the plate surface where peak (u1) value plummets from 0.037 for M = 5 to 
0.0035 for M = 10 (Fig. 5). Unsteady mean cross flow velocity component (w1) is also reduced in 
magnitude with a rise in M. For M = 10 cross flow velocity is almost totally suppressed at all locations 
transverse to the wall. With weaker magnetic field the backflow presence is substantial. As such very 
strong magnetic field may be applied in operations to successfully inhibit backflow normal to the plate 
surface (Fig. 10). The magnitude of the velocities (u1 & w1) reduces with increase in the inverse Darcy 
parameter D-1. Lower the permeability of the porous medium the fluid speed retards in the entire fluid 
region (Fig. 6 & 11). Increasing radiation-conduction number, K1, as with the steady mean flow (u0) 
discussed in figure 3, again has an opposing influence on unsteady main flow velocity (u1). The profiles 
are similar to those for steady mean flow. Conversely cross flow velocity (w1) is positively affected by an 
increase in K1 as depicted in figure 5. Profiles become less negative as K1 rises from 1 through 2 to 3. As 
such backflow is inhibited considerably with increasing thermal radiation. We observe that an unsteady 
mean cross flow velocity trough occurs near the plate surface at y ~1. At the plate cross flow velocity 
vanishes and at large distance from the plate again vanishes (Fig. 7 & 12). Figures 8 and 13 show the 
effect of Grashof number on the unsteady mean main flow velocity component (u1) and the unsteady 
mean cross flow velocity component (w1), respectively. In both cases increasing buoyancy has an adverse 
effect on both velocity fields. Main flow velocity remains however positive always i.e. there is no 
presence of backflow. Cross flow velocity is consistently negative throughout the regime indicating that 
backflow is always present. Lower buoyancy forces i.e. smaller Grashof number serves to reduce the 
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backflow. Very little effect of oscillation frequency ( ) is computed, in figure 9, on the unsteady mean 
main flow velocity component, u1 which decreases very slightly as   rises from 2 through 4 to 6. 
However frequency exerts a marked influence on the unsteady mean cross flow velocity component (w1), 
as shown in figure 14 which is decreased substantially with a rise in . Backflow is therefore augmented 
with increasing oscillation frequency, with the maximum effect at close proximity to the plate. In 
engineering design applications, therefore this region (y ~ 1) would be of particular interest in controlling 
backflow during MHD generator operations. 
The magnitude of the temperature 0  reduces with increase in radiation-conduction number K1 due to 
steady mean flow (Fig. 15). The magnitude of the temperature 1  reduces with increase in K1 and Pr due 
to unsteady mean flow (Fig. 16 &17). Similarly the magnitude of the temperature 1  reduces with 
increase in K1 and enhances with increase in Pr due to unsteady cross flow (Fig. 18 &19). The magnitude 
of the temperature 1  reduces in 5.2y0  and y=4.5 and enhances within the domain 2.5<y<4.5 with 
increase in surface temperature oscillation   due to unsteady mean flow (Fig. 20). Likewise the 
magnitude of the temperature 1  enhances in 5.1y5.0   and reduces within the domain 

5.4y5.2   with increase in surface temperature oscillation   due to unsteady cross flow (Fig. 21). 
Tables (1-3) also show the combined influence of several of the dimensionless parameters on the shear 
stress at the plate. An increase in M and inverse Darcy parameter D-1 causes increase in the shear stress at 
the plate y=0 due to a steady mean flow (u0) i.e. values become increasingly negative. Increasing 
radiation-conduction parameter, K1 and Grashof number Gr also decreases the shear stress i.e. decelerates 
the flow, in consistency with the velocity distribution shown in figure (1-4) (Table. 1). Table 2 indicates 
that shear stress at the plate with unsteady mean flow due to main flow (u1) reduces with increase in Gr 
and  , and is greatly increased with an increase in the square root of the Hartmann magneto hydro 
dynamic number (M), inverse Darcy parameter D-1 and radiation-conduction parameter, K1. Unsteady 
mean flow is therefore enhanced strongly with an increase in magnetic field strength. An increase in 
thermal radiation-conduction number (K1) also decreases values but very slightly indicating that thermal 
radiation has a very weak effect on flow at the plate surface. On the other hand, the shear stress at the 
plate with unsteady mean flow due to cross flow direction (w1) as shown in table 3 is considerably 
increased with square root of the Hartmann magneto hydro dynamic number (M) since the magnetic 
retarding force acts in the same direction as this flow component and boosts secondary (cross) flow. A 
rise in thermal radiation-conduction number (K1) also increases the slightly since values become less 
negative indicating that backflow is resisted with greater thermal radiation contribution. The shear stress 
enhances due to cross flow with increasing M, D-1 and , and reduces with increasing K1 and Gr. An 
increase in frequency of oscillation ( ) causes the temperature gradient at the plate due to unsteady mean 
flow i.e. to decrease slightly, as indicated in table 4; conversely increasing thermal radiation-conduction 
parameter (K1) has a strong positive effect inducing a major increase in Temperature gradient at the plate 
due to unsteady cross flow is affected more strongly (Table. 5) with an increase in frequency of 
oscillation ( ), being reduced from  -0.03531 for  = 2, to -0.07036 for  = 4 and to the lowest value of 
-0.10491 for  = 6 (all at K1 = 1). In contrast to this the temperature gradient, is increased somewhat with 
an increase in thermal radiation-conduction parameter (K1), for any value of  . The combined influence 
of thermal radiation-conduction parameter (K1) and Prandtl number (Pr) on the temperature gradient at 
the plate due to unsteady main flow is shown in table 6.  An increase in thermal radiation-conduction 
parameter (K1) substantially decreases values for all Prandtl numbers. An increase in Prandtl number also 
decreases values. Lower Pr values imply a higher thermal conductivity and correspond to liquid metals 
(Pr<<1). Pr = 1 implies that energy and momentum are diffused at the same rate and the lowest value of 
occurs for Pr =1, at a given value of K1.  Finally in table 7, temperature gradient at the plate due to 
unsteady cross flow is observed to be increased with an elevation in thermal radiation-conduction 
parameter (K1) at any Prandtl number (Pr). Conversely increasing Prandtl number markedly reduces the 
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value of at a fixed value of K1. A similar trend was observed in the earlier studies of for example Duwairi 
and Damseh (2004), Raptis et al. (2004) and more recently by Samad et al.  (2006). The analytical 
solutions presented therefore provide a succinct confirmation of earlier results and also reveal some new 
interesting phenomena in the interaction of radiation, magnetic field, porous medium and periodicity of 
surface temperature. 
 
 
 
 

I. Velocity Distributions due to steady mean flow  
 

 
Figure 1: Velocity distribution due to a steady mean flow for various M 

                      with 0 , Gr=2, D-1=1000, K1=1, Pr=0.025 
 
 
 
 
 

 
Figure 2: Velocity distribution due to a steady mean flow for various D-1 

                     with 0 , Gr=2, M=2, K1=1, Pr=0.025 
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Figure 3: Velocity distribution due to a steady mean flow for various K1 

                     with 0 , Gr=2, M=2, D-1=1000, Pr=0.025 

 
Figure 4: Velocity distribution due to a steady mean flow for various Gr 

                                     with 0 , M=2, D-1=1000, K1=1, Pr=0.025 
 

II. Velocity Distributions due to unsteady mean and cross flow 
 

 
Figure 5: Unsteady mean flow distribution due to mean flow for various M 

                    with 2 , Gr=2, D-1=1000, K1=1, Pr=0.025 
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Figure 6: Unsteady mean flow distribution due to mean flow for various D-1 

                   with 2 , Gr=2, M=2,  K1=1, Pr=0.025 

 
Figure 7: Unsteady mean flow distribution due to mean flow for various K1 

                                  with 2 , Gr=2, D-1=1000, M=2, Pr=0.025 
 

 
Figure 8: Unsteady mean flow distribution due to mean flow for various Gr 

                                  with 2 , M=2, D-1=1000, K1=1, Pr=0.025 
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Figure 9: Unsteady mean flow distribution due to mean flow for various   

                  with 2Gr  , M=2, D-1=1000, K1=1, Pr=0.025 

 
Figure 10: Unsteady mean flow distribution due to cross flow for various M 

                    with 2 , Gr=2, D-1=1000, K1=1, Pr=0.025 
 

 
Figure 11: Unsteady mean flow distribution due to cross flow for various D-1 

                  with 2 , Gr=2, M=2, K1=1, Pr=0.025 
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Figure 12: Unsteady mean flow distribution due to cross flow for various K1 

                   with 2 , Gr=2, D-1=1000, M=2, Pr=0.025 

 
Figure 13: Unsteady mean flow distribution due to cross flow for various Gr 

                                    with 2 , M=2, D-1=1000, K1=1, Pr=0.025 
 

 
Figure 14: Unsteady mean flow distribution due to cross flow for various   

                  with 2Gr  , M=2, D-1=1000, K1=1, Pr=0.025 
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III. Temperature Distributions due to steady flow 
 

 
Figure 15: Temperature distribution due to a steady mean flow for various K1 

                                                       with 0  
 
IV. Temperature Distributions due to unsteady mean and cross flow 
 

 
Figure 16: Temperature distribution due to a unsteady mean flow for various K1 

                with 2 , Pr=0.025 

 
Figure 17: Temperature distribution due to a unsteady mean flow for various K1 

                                 with 2 , Pr=0.025 
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Figure 18: Temperature distribution due to a unsteady mean flow for various Pr 

               with 2 , K1=1 
 
 

 
Figure 19: Temperature distribution due to a unsteady mean flow for various Pr 

               with 2 , K1=1 
 

 
Figure 20: Temperature distribution due to a unsteady mean flow for various   

              With Pr=0.025, K1=1 
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Figure 21: Temperature distribution due to a unsteady mean flow for various   
 With Pr=0.025, K1=1 

 
Table 1: Shear stress ( ) at the plate y=0 due to a steady mean flow (u0) for various values of thermal 
radiation-conduction number (K1), square root of the Hartmann magneto hydro dynamic number (M), Gr 
for  = 0 

M I II III IV V VI VII 
2 -2.45263 -2.84408 -2.99426 -2.74452 -2.85825 -1.52432 -1.11452 
5 -4.64956 -4.83114 -5.26652 -4.73345 -4.75663 -2.44524 -2.00534 
8 -6.23345 -6.33452 -6.33216 -6.25445 -6.53243 -4.45244 -3.21145 
10 -9.66752 -9.81432 -10.1152 -9.75273 -9.84452 -6.22404 -5.00005 

 
 I II III IV V VI VII 

D-1 1000 2000 3000 1000 1000 1000 1000 
K1 1 1 1 2 3 1 1 
Gr 2 2 2 2 2 4 6 

 
Table 2: Shear stress ( )  at the plate  y=0 with unsteady mean flow due to main flow (u1) for various 
values of frequency of oscillation ( ) and square root of the Hartmann magneto hydro dynamic number 
(M),  K1, Gr  and Pr = 0.025 
M I II III IV V VI VII VIII IX 
2 -22.7127 -31.9755 -39.0822 -22.7135 -22.7141 -22.6693 -23.2893 -22.7126 -22.7125 
5 -22.9463 -32.1406 -39.2175 -22.9471 -22.9476 -22.9033 -22.6258 -22.9462 -22.9461 
8 -23.3738 -32.4458 -39.4676 -23.3745 -23.3751 -23.3315 -22.8602 -23.3737 -23.3736 

10 -23.7615 -32.7251 -39.6977 -23.7622 -23.7627 -23.7199 -23.6783 -23.7614 -23.7612 
 

 I II III IV V VI VII VIII IX 
D-1 1000 2000 3000 1000 1000 1000 1000 1000 1000 
K1 1 1 1 2 3 1 1 1 1 
Gr 2 2 2 2 2 4 6 2 2 
  2 2 2 2 2 2 2 4 6 
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Table 3: Shear stress ( )  at the plate  y=0 with unsteady mean flow due to cross flow (u1) for various 
values of frequency of oscillation ( ), square root of the Hartmann magneto hydro dynamic number (M),  
K1, Gr  and Pr = 0.025 
M I II III IV V VI VII VIII IX 
2 -22.0052 -31.2676 -38.3749 -22.0051 -22.0049 -21.9613 -21.0812 -22.0054 -22.0056 
5 -22.2387 -31.4332 -38.5102 -22.2386 -22.2384 -22.1953 -21.9175 -22.2389 -22.2392 
8 -22.6662 -31.7385 -38.7603 -22.6661 -22.6659 -22.6236 -22.1525 -22.6664 -22.6667 

10 -23.0539 -31.0177 -38.9897 -23.0538 -23.0536 -23.0122 -22.9701 -23.0541 -23.0543 
 

 I II III IV V VI VII VIII IX 
D-1 1000 2000 3000 1000 1000 1000 1000 1000 1000 
K1 1 1 1 2 3 1 1 1 1 
Gr 2 2 2 2 2 4 6 2 2 
  2 2 2 2 2 2 2 4 6 

Table 4: Temperature gradient at the plate due to unsteady main flow for various values of 
frequency of oscillation ( ) and thermal radiation-conduction parameter (K1) for Pr = 0.025. 

  I II III 
2 -1.00000 -1.41432 -1.73214 
4 -1.00125 -1.41466 -1.73228 
6 -1.00279 -1.41521 -1.73246 
8 -1.00424 -1.41732 -1.73284 

 
K1 1 2 3 

 
Table 5: Temperature gradient at the plate due to unsteady cross flow for various values of 

frequency of oscillation ( ) and thermal radiation-conduction parameter (K1) with Pr = 0.025. 
  I II III 
2 -0.02499 -0.01768 -0.01532 
4 -0.04993 -0.03534 -0.02894 
6 -0.07479 -0.05299 -0.03566 
8 -0.09222 -0.06735 -0.04225 

 
K1 1 2 3 

 
Table 6: Temperature gradient at the plate due to unsteady main flow for various values of 

thermal radiation-conduction parameter (K1) and Prandtl number (Pr) with   =2. 
K1 I II III IV V 
1 -1.28082 -1.00125 -1.00045 -1.32049 -1.46635 
2 -1.55949 -1.41462 -1.32645 -1.84538 -1.94522 
3 -1.82125 -1.73229 -1.63322 -2.00536 -2.14455 
4 -2.06095 -2.00019 -1.98882 -2.11432 -2.16654 

 
 I II III IV V 

Pr 0.025 0.05 0.075 0.025 0.025 
  2 2 2 4 6 
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Table 7: Temperature gradient at the plate due to unsteady cross flow for various values of 

thermal radiation-conduction parameter (K1) and Prandtl number (Pr) with   =2 
K1 I II III IV V 
1 -0.80022 -0.04992 -0.02452 -0.95263 -1.14362 
2 -0.65725 -0.03534 -0.02965 -0.83452 -0.93163 
3 -0.56289 -0.02885 -0.00145 -0.67425 -0.84435 
4 -0.49734 -0.02496 -0.00035 -0.05921 -0.62432 

 
 I II III IV V 

Pr 0.025 0.05 0.075 0.025 0.025 
  2 2 2 4 6 

 
Conclusions  
Exact solutions have been derived using complex variables for the transient Magneto hydro dynamic 
(MHD) convection flow of an electrically-conducting, Newtonian, optically-thin fluid from a flat plate 
with thermal radiation and surface temperature oscillation effects. Our analysis has shown that 

1. Steady mean flow velocity, (u0), is decreased with increasing thermal radiation (K1), inverse 
Darcy parameter D-1 and magnetic hydro dynamic parameter (M), increased with Grashof number 
(Gr). 

2. Unsteady mean flow velocity (u1) is reduced with increasing radiation-conduction number,  K1 , 
slightly decreases with increasing frequency of oscillation ( ) and also falls with a rise in 
Grashof number, inverse Darcy parameter D-1 and magnetic hydro dynamic parameter, M. 

3. Conversely cross flow velocity (w1) is increased with a rise in K1 but decreased with a rise in Gr,        
D-1 and  . Strong magnetic field also practically eliminates backflow. 

4. The magnitude of the temperature 0  reduces with increase in radiation-conduction number K1 
due to steady mean flow. 

5. The magnitude of the temperature 1  reduces with increase in K1 and Pr due to unsteady mean 
flow. The magnitude of the temperature 1  reduces with increase in K1 and enhances with 
increase in Pr due to unsteady cross flow.  

6. The magnitude of the temperature 1  reduces in 5.20  y and y=4.5 and enhances within the 
domain 2.5<y<4.5 with increase in surface temperature oscillation   due to unsteady mean 
flow. Likewise the magnitude of the temperature 1  enhances in 5.15.0  y  and reduces 
within the domain 5.45.2  y  with increase in surface temperature oscillation   due to 
unsteady cross flow 

7. An increase in M and inverse Darcy parameter D-1 causes increase in the shear stress at the plate 
y=0 due to a steady mean flow (u0). Increasing radiation-conduction parameter, K1 and Grashof 
number Gr also decreases the shear stress. 

8. The shear stress at the plate with unsteady mean flow due to main flow (u1) reduces with increase 
in Gr and , and is greatly increased with an increase in the square root of the Hartmann magneto 
hydro dynamic number (M), inverse Darcy parameter D-1 and radiation-conduction parameter, K1. 

9. The shear stress enhances due to cross flow with increasing M, D-1 and , and reduces with 
increasing K1 and Gr. 
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10. Temperature gradient at the plate due to unsteady cross flow is reduced substantially with an 
increase in frequency of oscillation but elevated with an increase in thermal radiation-conduction 
parameter (K1), for any value of  . 

11. An increase in thermal radiation-conduction parameter (K1) reduces strongly as does an increase 
in Prandtl number (Pr). 

12. Temperature gradient at the plate due to unsteady cross flow, increases with thermal radiation-
conduction parameter (K1) but reduces with a rise in Prandtl number. 
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