Research Article

SOME NOTES ON ABSOLUTE SUMMABILITY FACTORS

*W. T. Sulaiman

Department of Computer Engineering, College of Engineering, University of Mosul, Iraq *Author for Correspondence

ABSTRACT

In this paper we give improvement to the result of [3] concerning absolute summability of infinite series. 2000 (MSC): 40F05, 40D25.

Key Words: Absolute Summability, Summability Factor

INTRODUCTION

Let T be a lower triangular matrix, (s_n) a sequence, and

$$T_n := \sum_{\nu=0}^n t_{n\nu} s_{\nu}. \tag{1.1}$$

A series $\sum a_n$ is said to be summable $|T|_k$, $k \ge 1$, if

$$\sum_{n=1}^{\infty} n^{k-1} \left| \Delta T_{n-1} \right|^k < \infty. \tag{1.2}$$

Given any lower triangular matrix T one can associate the matrices \overline{T} and \hat{T} , with entries defined by

$$\bar{t}_{nv} = \sum_{i=v}^{n} t_{ni}, \quad n, i = 0, 1, 2..., \qquad \hat{t}_{nv} = \bar{t}_{nv} - \bar{t}_{n-1,v}$$

respectively. With $s_n = \sum_{i=0}^n a_i \lambda_i$,

$$t_{n} = \sum_{\nu=0}^{n} t_{n\nu} s_{\nu} = \sum_{\nu=0}^{n} t_{n\nu} \sum_{i=0}^{\nu} a_{i} \lambda_{i} = \sum_{i=0}^{n} a_{i} \lambda_{i} \sum_{\nu=i}^{n} t_{n\nu} = \sum_{i=0}^{n} \bar{t}_{ni} a_{i} \lambda_{i}.$$
 (1.3)

$$Y_n := t_n - t_{n-1} = \sum_{i=0}^n \bar{t}_{ni} a_i \lambda_i - \sum_{i=0}^{n-1} \bar{t}_{n-1,i} a_i \lambda_i = \sum_{i=0}^n \hat{t}_{ni} a_i \lambda_i, \quad \text{as } \bar{t}_{n-1,n} = 0.$$
 (1.4)

We call T a triangle if T is lower triangular and $t_{nn} \neq 0$ for all n.

We assume that (p_n) is a sequence of positive real numbers such that

$$P_n = p_0 + p_1 + \dots + p_n \rightarrow \infty \text{ as } n \rightarrow \infty.$$

In the special case when $t_{nv} = p_v / P_n$, summability $|T|_k$ reduces to $|\overline{N}, p_n|_k$ summability.

Rhoads and Savas (2005) proved the following result

Theorem 1.1. Let A be a triangle with nonnegative entries satisfying

- (i) $\overline{a}_{n0} = 1$, n = 0, 1, ...,
- (ii) $a_{n-1,v} \ge a_{nv}$ for $n \ge v+1$,
- (iii) $na_{nn} = O(1), 1 = O(na_{nn}),$

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) An Online International Journal Available at http://www.cibtech.org/jpms.htm 2011 Vol. 1 (1) October-December, pp.86-92/Sulaiman

Research Article

(iv)
$$\sum_{v=0}^{n} a_{vv} |\hat{a}_{n,v+1}| = O(a_{nn}).$$

If (X_n) is a positive monotonic nondecreasing sequence such that

(v)
$$\left|\lambda_n\right| X_n = O(1)$$
,

(vi)
$$\sum_{n=1}^{m} nX_n \left| \Delta^2 \lambda_n \right| = O(1)$$
,

(vii)
$$\sum_{n=1}^{m} a_{nn} |t_n|^k = O(X_m)$$
, where $t_n = \frac{1}{n+1} \sum_{k=1}^{n} k a_k$,

then the series $\sum a_n \lambda_n$ is summable $|A|_k$, $k \ge 1$.

The object of this paper is to give two improvements to theorem 1.1 as follows

- 1. By weakening the condition (v),
- 2. By weakening the condition (vii),

Main Result

In what follows we prove the following

Theorem 2.1. Let A be a triangle with nonnegative entries satisfying

(i)
$$\overline{a}_{n0} = 1$$
, $n = 0, 1, ...$,

(ii)
$$a_{n-1,v} \ge a_{nv}$$
 for $n \ge v + 1$,

(iii)
$$na_{nn} = O(1), 1 = O(na_{nn}),$$

(iv)
$$\sum_{v=0}^{n} a_{vv} |\hat{a}_{n,v}| = O(a_{nn}).$$

(v)
$$\sum_{n=\nu+1}^{m+1} n^{k-1} |\hat{a}_{n,\nu+1}|^k = O(1).$$

If (X_n) is a positive monotonic nondecreasing sequence and if (λ_n) is a sequence of constants satisfying

(vi)
$$\lambda_n = o(1)$$
,

(vii)
$$\sum_{n=1}^{m} nX_{n} |\Delta^{2}\lambda_{n}| = O(1)$$
,

(viii)
$$\sum_{n=1}^{m} \frac{a_{nn} |t_n|^k}{X_n^{k-1}} = O(X_m)$$
, where $t_n = \frac{1}{n+1} \sum_{k=1}^{n} k a_k$,

then the series $\sum a_n \lambda_n$ is summable $|A|_{k}$, $k \ge 1$.

It may be mentioned as well that whenever $X_n \to \infty$, condition (viii) of theorem 2.1 is weaker than condition (vii) of theorem 1.1. For if (viii) of theorem 1.1 is satisfied, then $X_n \to \infty$ implies that $\lambda_n \to 0$, choosing $\lambda = n^{-1/2}, X = n^{\epsilon + (1/2)}, \epsilon > 0.$

$$\lambda_n = n^{-1/2}, X_n = n^{\epsilon + (1/2)}, \epsilon > 0,$$

we obtain $|\lambda_n| X_n = O(n^{\epsilon}) \neq O(1)$.

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) An Online International Journal Available at http://www.cibtech.org/jpms.htm
2011 Vol. 1 (1) October-December, pp.86-92/Sulaiman

Research Article

Although we add conditions (v), but this condition with (vi) caused for no losing powers via the proof. As an example in the proof of theorem 1.1, $\left|\lambda_n\right|^{k-1}$ has been replaced by O(1), and this is not the case in theorem 2.1.

Lemma 2.2. Condition (viii) of theorem 2.1 is weaker than (vii) of theorem 1.1

Proof. If (viii) holds, then we have

$$\sum_{n=1}^{m} \frac{a_{nn} |t_n|^k}{X_n^{k-1}} = O\left(\frac{1}{X_1^{k-1}}\right) \sum_{n=1}^{m} a_{nn} |t_n|^k = O(X_m),$$

while if (vii) is satisfied then,

$$\begin{split} \sum_{n=1}^{m} a_{nn} |t_{n}|^{k} &= \sum_{n=1}^{m} \frac{a_{nn}}{X_{n}^{k-1}} |t_{n}|^{k} X_{n}^{k-1} \\ &= \sum_{n=1}^{m-1} \left(\sum_{\nu=1}^{n} \frac{a_{\nu\nu} |t_{\nu}|^{k}}{X_{\nu}^{k-1}} \right) \Delta X_{n}^{k-1} + \left(\sum_{n=1}^{m} \frac{a_{nn} |t_{n}|^{k}}{X_{n}^{k-1}} \right) X_{m}^{k-1} \\ &= O(1) \sum_{n=1}^{m-1} X_{n} |\Delta X_{n}^{k-1}| + O(X_{m}) X_{m}^{k-1} \\ &= O(X_{m-1}) \sum_{n=1}^{m-1} (X_{n+1}^{k-1} - X_{n}^{k-1}) + O(X_{m}^{k}) \\ &= O(X_{m-1}) (X_{m}^{k-1} - X_{1}^{k-1}) + O(X_{m}^{k}) \\ &= O(X_{m}^{k}) \neq O(X_{m}), \text{ for } k > 1. \end{split}$$

Lemma 2.3. Conditions (vi)-(vii) of theorem 2.1 implies

$$nX_n |\Delta \lambda_n| = O(1), \tag{2.1}$$

$$\sum_{n=1}^{\infty} X_n |\Delta \lambda_n| < \infty, \tag{2.2}$$

and (2.2) implies

$$\left|\lambda_n\right|X_n = \mathcal{O}(1). \tag{2.3}$$

Proof. Since $\lambda_n \to 0$, then $\Delta \lambda_n \to 0$, and hence

$$nX_{n}|\Delta\lambda_{n}| = nX_{n}\sum_{v=n}^{\infty}\Delta|\Delta\lambda_{v}| = O(1)nX_{n}\sum_{v=n}^{\infty}|\Delta^{2}\lambda_{v}| = O(1)\sum_{v=n}^{\infty}vX_{v}|\Delta^{2}\lambda_{v}| = O(1).$$

$$\sum_{n=1}^{m}X_{n}|\Delta\lambda_{n}| = \sum_{n=1}^{m-1}\left(\sum_{v=1}^{n}X_{v}\right)\Delta|\Delta\lambda_{n}| + \left(\sum_{n=1}^{m}X_{n}\right)|\Delta\lambda_{m}|$$

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) An Online International Journal Available at http://www.cibtech.org/jpms.htm
2011 Vol. 1 (1) October-December, pp.86-92/Sulaiman

Research Article

$$= O(1) \sum_{n=1}^{m-1} nX_n \left| \Delta^2 \lambda_n \right| + O(1) mX_m \left| \Delta \lambda_m \right| = O(1)$$

As $\lambda_n \to 0$,

$$\left|\lambda_{n}\right|X_{n} = X_{n}\sum_{\nu=n}^{\infty}\Delta\left|\lambda_{\nu}\right| = O(1)\sum_{\nu=n}^{\infty}X_{\nu}\left|\Delta\lambda_{\nu}\right| = O(1).$$

Lemma 2.4. Under the conditions of theorem 1.2,

$$\sum_{\nu=0}^{n-1} \left| \Delta_{\nu} \hat{a}_{n\nu} \right| = \mathcal{O}\left(a_{nn}\right), \tag{2.4}$$

$$\sum_{n=\nu+1}^{m+1} |\Delta_{\nu} \hat{a}_{n\nu}| = \mathcal{O}(a_{\nu\nu}). \tag{2.5}$$

$$\sum_{n=\nu+1}^{m+1} \left| \hat{a}_{n,\nu+1} \right| = \mathcal{O}(1). \tag{2.6}$$

For the proof see [3].

Proof of Theorem 1.2.

Let Y_n denote the nth term of A-transform of the series $\sum a_n \lambda_n$, then

$$\begin{split} Y_{n} &\coloneqq \sum_{v=0}^{n} \hat{a}_{nv} \lambda_{v} a_{v} = \sum_{v=1}^{n} v \, a_{v} \, \frac{\hat{a}_{nv} \lambda_{v}}{v} \\ &= \sum_{v=1}^{n-1} \left(\sum_{r=1}^{v} r \, a_{r} \right) \Delta_{v} \left(\frac{\hat{a}_{nv} \lambda_{v}}{v} \right) + \left(\sum_{v=1}^{n} v \, a_{v} \right) \left(\frac{a_{nn} \lambda_{n}}{n} \right) \\ &= \sum_{v=1}^{n-1} (v+1) t_{v} \left(\frac{1}{v(v+1)} \hat{a}_{nv} \lambda_{v} + \frac{1}{v+1} \Delta_{v} \hat{a}_{nv} \lambda_{v} + \frac{1}{v+1} \hat{a}_{n,v+1} \Delta \lambda_{v} \right) + \frac{n+1}{n} t_{n} a_{nn} \lambda_{n} \\ &= \sum_{v=1}^{n-1} \left(\frac{1}{v} t_{v} \hat{a}_{nv} \lambda_{v} + t_{v} \Delta_{v} \hat{a}_{nv} \lambda_{v} + t_{v} \hat{a}_{n,v+1} \Delta \lambda_{v} \right) + \frac{n+1}{n} t_{n} a_{nn} \lambda_{n} \\ &= Y_{n1} + Y_{n2} + Y_{n3} + Y_{n4} \, . \end{split}$$

In order to prove the Theorem, by Minkowski's inequality, we have to show that

$$\sum_{n=1}^{\infty} n^{k-1} |Y_{nj}|^k < \infty, \quad j = 1, 2, 3, 4.$$

By Holder's inequality,

$$\sum_{n=2}^{m} n^{k-1} |Y_{n1}|^{k} = \sum_{n=2}^{m} n^{k-1} \left| \sum_{\nu=1}^{n-1} \frac{1}{\nu} t_{\nu} \hat{a}_{n\nu} \lambda_{\nu} \right|^{k}$$

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) An Online International Journal Available at http://www.cibtech.org/jpms.htm 2011 Vol. 1 (1) October-December, pp.86-92/Sulaiman

Research Article

$$\leq \sum_{n=2}^{m} n^{k-1} \sum_{\nu=1}^{n-1} \nu^{-k} a_{\nu\nu}^{1-k} |t_{\nu}|^{k} |\hat{a}_{n\nu}| |\lambda_{\nu}|^{k} \left(\sum_{\nu=1}^{n-1} a_{\nu\nu} |\hat{a}_{n\nu}| \right)^{k-1} \\
= O(1) \sum_{n=2}^{m} (n a_{nn})^{k-1} \sum_{\nu=1}^{n-1} \nu^{-k} a_{\nu\nu}^{1-k} |t_{\nu}|^{k} |\hat{a}_{n\nu}| |\lambda_{\nu}|^{k} \\
= O(1) \sum_{\nu=1}^{m} a_{\nu\nu} \left(\nu a_{\nu\nu} \right)^{-k} |t_{\nu}|^{k} |\lambda_{\nu}|^{k} \sum_{n=\nu+1}^{\infty} |\hat{a}_{n\nu}| \\
= O(1) \sum_{\nu=1}^{m} a_{\nu\nu} |t_{\nu}|^{k} |\lambda_{\nu}|^{k} \\
= O(1) \sum_{\nu=1}^{m} \frac{a_{\nu\nu} |t_{\nu}|^{k}}{X_{\nu}^{k-1}} |\lambda_{\nu}| \left(X_{\nu} |\lambda_{\nu}| \right)^{k-1} \\
= O(1) \sum_{\nu=1}^{m} \frac{a_{\nu\nu} |t_{\nu}|^{k}}{X_{\nu}^{k-1}} |\lambda_{\nu}| \\
= O(1) \sum_{\nu=1}^{m-1} \Delta |\lambda_{\nu}| \sum_{r=1}^{\nu} \frac{a_{rr} |t_{r}|^{k}}{X_{r}^{k-1}} + O(1) |\lambda_{m}| \sum_{\nu=1}^{m} \frac{a_{\nu\nu} |t_{\nu}|^{k}}{X_{\nu}^{k-1}} \\
= O(1) \sum_{\nu=1}^{m-1} |\Delta \lambda_{\nu}| X_{\nu} + O|\lambda_{m}| X_{m} \\
= O(1).$$

in view of (iv), (2.2),(2.3) and (2.6).

$$\begin{split} \sum_{n=2}^{\infty} n^{k-1} |Y_{n2}|^{k} &= \sum_{n=2}^{\infty} n^{k-1} \left| \sum_{\nu=1}^{n-1} t_{\nu} \Delta_{\nu} \hat{a}_{n\nu} \lambda_{\nu} \right|^{k} \\ &\leq \sum_{n=2}^{\infty} n^{k-1} \sum_{\nu=1}^{n-1} |t_{\nu}|^{k} |\Delta_{\nu} \hat{a}_{n\nu}| |\lambda_{\nu}|^{k} \left(\sum_{\nu=1}^{n-1} |\Delta_{\nu} \hat{a}_{n\nu}| \right)^{k-1} \\ &= O(1) \sum_{n=2}^{\infty} (n a_{nn})^{k-1} \sum_{\nu=1}^{n-1} |t_{\nu}|^{k} |\Delta_{\nu} \hat{a}_{n\nu}| |\lambda_{\nu}|^{k} \\ &= O(1) \sum_{\nu=1}^{\infty} |t_{\nu}|^{k} |\lambda_{\nu}|^{k} \sum_{n=\nu+1}^{\infty} |\Delta_{\nu} \hat{a}_{n\nu}| \\ &= O(1) \sum_{\nu=1}^{\infty} a_{\nu\nu} |t_{\nu}|^{k} |\lambda_{\nu}|^{k} \\ &= O(1), \end{split}$$

as in the case of Y_{n1} .

$$\sum_{n=2}^{m} n^{k-1} |Y_{n3}|^{k} = \sum_{n=2}^{m} n^{k-1} \left| \sum_{\nu=1}^{n-1} t_{\nu} \hat{a}_{n,\nu+1} \Delta \lambda_{\nu} \right|^{k}$$

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) An Online International Journal Available at http://www.cibtech.org/jpms.htm 2011 Vol. 1 (1) October-December, pp.86-92/Sulaiman

Research Article

$$\leq \sum_{n=2}^{m} n^{k-1} \sum_{\nu=1}^{n-1} |t_{\nu}|^{k} X_{\nu}^{1-k} |\hat{a}_{n,\nu+1}|^{k} |\Delta \lambda_{\nu}| \left(\sum_{\nu=1}^{n-1} X_{\nu} |\Delta \lambda_{\nu}| \right)^{k-1}$$

$$= O(1) \sum_{n=2}^{m} n^{k-1} \sum_{\nu=1}^{n-1} |t_{\nu}|^{k} X_{\nu}^{1-k} |\hat{a}_{n,\nu+1}|^{k} |\Delta \lambda_{\nu}|$$

$$= O(1) \sum_{\nu=1}^{m} |t_{\nu}|^{k} X_{\nu}^{1-k} |\Delta \lambda_{\nu}| \sum_{n=\nu+1}^{m} n^{k-1} |\hat{t}_{n,\nu+1}|^{k}$$

$$= O(1) \sum_{\nu=1}^{m} \frac{a_{\nu\nu} |t_{\nu}|^{k}}{X_{\nu}^{k-1}} \nu |\Delta \lambda_{\nu}|$$

$$= O(1) \sum_{\nu=1}^{m-1} \Delta (\nu |\Delta \lambda_{\nu}|) \sum_{r=1}^{\nu} \frac{a_{rr} |t_{r}|^{k}}{X_{r}^{k-1}} + O(1) m |\Delta \lambda_{m}| \sum_{\nu=1}^{m} \frac{a_{\nu\nu} |t_{\nu}|^{k}}{X_{\nu}^{k-1}}$$

$$= O(1) \sum_{\nu=1}^{m-1} X_{\nu} |\Delta \lambda_{\nu}| + O(1) \sum_{\nu=1}^{m-1} \nu X_{\nu} |\Delta^{2} \lambda_{\nu}| + O(1) m X_{m} |\Delta \lambda_{m}|$$

$$= O(1).$$

in view of (2.1), (2.2), (v), and (viii).

$$\sum_{n=2}^{\infty} n^{k-1} |Y_{n4}|^k = \sum_{n=2}^{\infty} n^{k-1} \left| \frac{n+1}{n} t_n a_{nn} \lambda_n \right|^k$$

$$= O(1) \sum_{n=1}^{\infty} n^{k-1} |t_n|^k a_{nn}^k |\lambda_n|^k$$

$$= O(1) \sum_{n=1}^{\infty} a_{nn} |t_n|^k |\lambda_n|^k = O(1),$$

as in the case of Y_{n2}

This completes the proof of the Theorem.

Corollary 2.5. Let

(i)
$$np_n = O(P_n), P_n = O(np_n),$$

(ii)
$$\sum_{n=\nu+1}^{\infty} n^{k-1} \left(\frac{p_n}{P_n P_{n-1}} \right)^k = O\left(1/P_{\nu}^k \right).$$

If (X_n) is a positive nondecreasing sequence and the sequence (λ_n) is satisfying conditions (vi)-(vii) of theorem 2.1, and

$$\sum_{n=1}^{m} \frac{p_{n} |t_{n}|^{k}}{P_{n} X_{n}^{k-1}} = O(X_{m}), \qquad (2.7)$$

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) An Online International Journal Available at http://www.cibtech.org/jpms.htm 2011 Vol. 1 (1) October-December, pp.86-92/Sulaiman

Research Article

then the series
$$\sum a_n \lambda_n$$
 is summable $\left| \overline{N}, p_n \right|_k$, $k \ge 1$.

REFERENCES

- [1] **H. Bor** (1993). On absolute summability factors. Proceedings of the American Mathematical Society. 118. 71-75.
- [2] **T. M. Flett (1957).** On an extension of absolute summability and some theorems of Littlewood and Paley. Proceedings of the London Mathematical Society. Third Series **7.** 113-141.
- [3] **B. E. Rhoads and E. Savas (2005).** A note on absolute summability factors. Periodica Mathematica Hungarica, **51 (1).** 53-60.