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ABSTRACT

The object of the present paper is to discuss certain integral properties of a general class of polynomials
and I-function, proposed by Inayat-Hussain which contains a certain class of Feynman integrals. We
establish certain new double integral relations pertaining to a product involving general class of
polynomials and I-function. These double integral relations are unified in nature and act as key formulae
from which we can obtain as their special cases, double integral relations concerning a large number of
simpler special function and polynomials. For the sake of illustration, we record here some special cases
of our main results which are also new and of interest by themselves. The results established here are
basic in nature and are likely to find useful applications in several fields.
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INTRODUCTION
The I-function will be defined and represented as follows [2]
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and m,n,p,,q areintegers satisfy 0<n<p,l1<m<gq (i=1..,r),r is finite, a;, B;,a;,f; are
positive numbers and aj,bj,aji,bji are complex numbers. I-function which is a generalized form of the
well known Fox's H-function [4, p.10, Egn.(2.1.1)]. In the sequel the I-function will be studied under the
following conditions of existence:
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[x] will be defined and represented as follows [3, p.185, Eqn.
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where n,,...,n, =0,1,2,...;m,,...,m, are arbitrary positive integers, the coefficients A] ( A > 0) are

cases. These includes, among other, the Jacobl polynomials, the Bessel Polynomials, the Hermite
Polynomials, the Lagurre Polynomials, the Brafman Polynomials and several others [5, p. 158-161].

Main Results
We shall establish the following results:
(A)
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The above result is valid under the conditions (3), (4); Re(a+b+bj/ﬂj)>0(1s j sm) and a,b are
positive. Also 0<x<1and 0<y<1.
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Proof of the above result- In the left hand side of equation (8) put the value of 1% . [x]and S ™ "[X]

from (1) and (7) respectively, interchanging the order of integration and summation then making the use
of known result [1, p.145], we get the result (8) after little simplification.
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The above result is valid under the conditions (3), (4); Re(a+b+bj/ﬂj)>0(1s j sm) and a,b are
positive. Also 0<s<ow and O<t<oo.



Proof of the above result: In the left hand side of equation (9) put the value of 1% [x]and S ™ "[X]

from (1) and (7) respectively, interchanging the order of integration and summation then making the use
of known result [1, p.177], we get the result (9) after little simplification.
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The above result is valid under the conditions (3), (4); Re(a+b+bj/ﬂj)>0(1s j sm) and a,b are

positive. Also 0<s<1 and O<t<1.

Proof of the above result: In the left hand side of equation (10) put the value of 1'% [x]and S ™ "[X]

from (1) and (7) respectively, interchanging the order of integration and summation then making the use
of known result [1, p.243], we get the result (10) after little simplification.
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The above result is valid under the conditions (3), (4); Re(a+b+o+b;/B;)>0(1< j<m) and ab,c
are positive. Also 0 <x<1and O<y<1.

Proof of the above result: In the left hand side of equation (11) put the value of 173 [x]and S ™ "[X]

from (1) and (7) respectively, interchanging the order of integration and summation then making the use
of known result [1, p.145], we get the result (11) after little simplification.

Special Cases
(1) By applying the our results given in (A), (B), (C) and (D) to the case of Hermite polynomials [5] by

setting Sf(x)ex”’an{%} inwhich m,...m =2;n,.n. =n;r=1;A , =(- 1), we have the
X

following interesting results.
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The conditions of convergence of the above result can be easily obtained from those of (8)
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The conditions of convergence of the above result can be easily obtained from those of (9)
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The conditions of convergence of the above result can be easily obtained from those of (10)
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The conditions of convergence of the above result can be easily obtained from those of (11)
(11) By applying the our results given in (A), (B), (C) and (D) to the case of Laguerre polynomials [5] by

setting S? (x) > L [x] inwhich m,,...m =1 n,..n, =n;r=1; A , :(n;ajﬁ,we have
|

the following interesting results.
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The conditions of convergence of the above result can be easily obtained from those of (8)
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The conditions of convergence of the above result can be ea3|ly obtained from those of (9)
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The conditions of convergence of the above result can be easily obtained from those of (10)
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The conditions of convergence of the above result can be easily obtained from those of (11)
(1) If we put r =1, I-function reduces to the familiar Fox's H-function [4, p.10, Eqgn. (2.1.1)], then the
results (A), (B), (C) and (D) reduces to the following form:
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The conditions of convergence of the above result can be easily obtained from those of (8)
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The conditions of convergence of the above result can be easily obtained from those of (9)
(C3)
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The conditions of convergence of the above result can be easily obtained from those of (10)
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The conditions of convergence of the above result can be easily obtained from those of (11)
(IV) If we put r=1n=p,=0m=1q,=2b =0,8,=1b,,,, =-4,8,,., = #, then I-function reduces to the
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Wright's generalized Bessal function [6, p.257], i.e. Iou{
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The conditions of convergence of the above result can be easily obtained from those of (8)
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The conditions of convergence of the above result can be easily obtained from those of (9)
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The conditions of convergence of the above result can be easily obtained from those of (10)
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The conditions of convergence of the above result can be easily obtained from those of (11)
(V) If we put r=1n=p =pm=1q =q+1b =0, =1a,=1-a;b;, =1-b;,5; = B,,, then I-function

reduces to the generalized wright hypergeometrlc functlon [7, p.287],
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The conditions of convergence of the above result can be easily obtained from those of (9)
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The conditions of convergence of the above result can be easily obtained from those of (10)
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The conditions of convergence of the above result can be easily obtained from those of (11)
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