International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) An Online International Journal Available at <u>http://www.cibtech.org/jpms.htm</u> 2011 Vol. 1 (1) October-December, pp.76-79/Rasool **Research Article**

ON THE LOCATION OF ZEROS OF A POLYNOMIAL

*Tawheeda Rasool

Department of Mathematics, National Institute of Technology, India – 190006 *Author for Correspondence

ABSTRACT

In this paper we prove a result concerning the distribution of the zeros of a polynomial in the complex plane. From our result a variety of interesting results can be deduced by a fairly uniform procedure.

Key Words: Polynomials, Zeros, Analytic functions.

Mathematics Subject classification (1991): 30C10, 30C15

INTRODUCTION

Theorem A: Let $P(z) = \sum_{j=0}^{n} a_j z^j$ be a polynomial with complex coefficients. If $\operatorname{Re} a_j = \alpha_j$ and $\operatorname{Im} a_j = \beta$ for $i = 0, 1, 2, \dots, n, q \neq 0$ such that for some $k \ge 1, k \ge 1$

Im $a_j = \beta_j$ for j = 0, 1, 2, ..., n, $a_n \neq 0$ such that for some $k \ge 1, \lambda \ge 1$

$$K\alpha_n \ge \alpha_{n-1} \ge \dots \ge \alpha_1 \ge \alpha_0$$
$$K\beta_n \ge \beta_{n-1} \ge \dots \ge \beta_1 \ge \beta_0$$

then P(z) has all its zeros in

(1)
$$\left| z + (K-1) \right| \leq \frac{\left\{ K \left(\alpha_n + \beta_n \right) - \left(\alpha_0 + \beta_0 \right) + \left| \alpha_0 \right| \right\}}{\left| a_n \right|}$$

Aziz and Mohammad [1980] extended EnestrÖm-Kakeya Theorem to the class of Analytic functions $P(z) = \sum_{j=0}^{n} a_j z^j$ (not identically zero) with its coefficients a_i satisfying a relation analogous to that of
ExectrÖm Values and energy the following theorem

EnestrÖm-Kakeya and proved the following theorem.

Theorem B: Let
$$f(z) = \sum_{j=0}^{\infty} a_j z^j \neq 0$$
 be analytic in $|z| \le t$. If $a_j > 0$ and

 $a_{j-1} - ta_j \ge 0$, $j = 1, 2, 3, \dots$ then f(z) does not vanish in |z| < t.

Aziz and Shah [1998] relaxed the hypothesis of Theorem B and proved the following.

Theorem C: If
$$f(z) = \sum_{j=0}^{\infty} a_j z^j \neq 0$$
 be analytic in $|z| < t$ such that for some $k \ge 1$
 $ka_0 \ge ta_1 \ge t^2 a_2 \ge \dots,$

then f(z) does not vanish in

$$\left|z - \left(\frac{K-1}{2K-1}\right)t\right| \le \frac{Kt}{2K-1}.$$

Shah and Liman [2007] proved the following result concerning the location of zeros of analytic function.

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) An Online International Journal Available at <u>http://www.cibtech.org/jpms.htm</u> 2011 Vol. 1 (1) October-December, pp.76-79/Rasool **Research Article**

Theorem D: Let $f(z) = \sum_{j=0}^{\infty} a_j z^j \neq 0$ be analytic in |z| < t. If for some $k \ge 1$, $k |a_0| \ge t |a_1| \ge t^2 |a_2| \ge ...$,

and for some β ,

$$\left|\arg a_{j}-\beta\right| \leq \alpha \leq \frac{\pi}{2}, \ j=0,1,2,\ldots,$$

then f(z) does not vanish in

(2)
$$\left| z - \frac{(K-1)t}{M^2 - (K-1)^2} \right| < \frac{Mt}{M^2 - (K-1)^2},$$

where

$$M = K(\cos\alpha + \sin\alpha) + 2\frac{\sin\alpha}{|a_0|} \sum_{j=1}^{\infty} |a_j| t^j$$

In this paper we prove the following result which not only generalizes Theorem D but in particular cases reduces to Theorem C and Theorem B. More precisely we prove

Theorem 1: Let
$$f(z) = \sum_{j=0}^{\infty} a_j z^j \neq 0$$
 be analytic in $|z| \leq t$. If for some $K \geq 1$
 $K |a_0| \geq t |a_1| \geq t^2 |a_2| \geq ... \geq t^{\lambda} |a_{\lambda}| \leq t^{\lambda+1} |a_{\lambda+1}| \leq ...$

and for some real β

$$\arg a_j - \beta \Big| \le \alpha \le \frac{\pi}{2}, \ j = 0, 1, 2, \dots,$$

then f(z) does not vanish in

(3)
$$\left| z - \frac{(K-1)t}{M_4^2 - (K-1)^2} \right| < \frac{M_4 t}{M_4^2 - (K-1)^2},$$

where

$$M_{4} = \left(K - 2t^{\lambda} \left|\frac{a_{\lambda}}{a_{0}}\right|\right) \cos \alpha + K \sin \alpha + 2 \frac{\sin \alpha}{|a_{0}|} \sum_{j=1}^{\infty} |a_{j}| t^{j}$$

Remark 1.1: If we let $\lambda \to \infty$ in Theorem 1 we get Theorem D. For $\lambda \to \infty$, $\alpha = \beta = 0$ Theorem 1 reduces to Theorem C and for $\lambda \to \infty$, $\alpha = \beta = 0$, K = 1 Theorem 1 reduces to Theorem B We need the following lemma [1968] for the proof of the above Theorem.

Lemma: If $P(z) = \sum_{j=0}^{n} a_j z^j$ is a polynomial of degree *n* such that for some real β

$$\left| \arg a_{j} - \beta \right| \le \alpha \le \frac{\pi}{2}, \quad j = 0, 1, 2, \dots n \text{ then for some } t > 0$$
$$\left| ta_{j} - a_{j-1} \right| \le \left(|t| |a_{j}| - |a_{j-1}| \right) \cos \alpha + \left(|t| |a_{j}| + |a_{j-1}| \right) \sin \alpha$$

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) An Online International Journal Available at <u>http://www.cibtech.org/jpms.htm</u> 2011 Vol. 1 (1) October-December, pp.76-79/Rasool **Research Article**

Proof of Theorem 1: Since f(z) is analytic function in $|z| \le t$ therefore $\lim_{j\to\infty} a_j z^j = 0$. Now consider the function

$$F(z) = (z-t)f(z)$$

= $(z-t)(a_0 + a_1z + a_2z^2 + ...a_\lambda z^\lambda + ...)$
= $-ta_0 + (a_0 - ta_1)z + (a_1 - ta_2)z^2 + ...$
= $-ta_0 + a_0z - Ka_0z + (Ka_0 - ta_1)z + \sum_{j=2}^{\infty} (a_{j-1} - ta_j)z^j$
= $-ta_0 + a_0z - Ka_0z + G(z)$, (say)

(4) where

$$G(z) = (Ka_0 - ta_1)z + \sum_{j=2}^{\infty} (a_{j-1} - ta_j)z^j$$

clearly G(z) is analytic, G(0) = 0 and |z| = t

$$\begin{split} |G(z)| &= \left| \left(Ka_0 - ta_1 \right) z + \sum_{j=2}^{\infty} \left(a_{j-1} - ta_j \right) z^j \right| \\ &\leq t \left| \left(Ka_0 - ta_1 \right) \right| + t \sum_{j=2}^{\infty} \left(a_{j-1} - ta_j \right) t^{j-1} \\ &\leq t \left(K \left| a_0 \right| - t \left| a_1 \right| \right) \cos \alpha + t \left(K \left| a_0 \right| + t \left| a_1 \right| \right) \sin \alpha \\ &+ \left(t \left| a_1 \right| - t^2 \left| a_2 \right| \right) \cos \alpha + t \left(t \left| a_1 \right| + t^2 \left| a_2 \right| \right) \sin \alpha \\ &+ \left(t^2 \left| a_2 \right| - t^3 \left| a_3 \right| \right) \cos \alpha + t \left(t^2 \left| a_2 \right| + t^3 \left| a_3 \right| \right) \sin \alpha + \dots + \\ &+ \left(t^{\lambda - 1} \left| a_{\lambda - 1} \right| - t^{\lambda} \left| a_{\lambda} \right| \right) \cos \alpha + t \left(t^{\lambda - 1} \left| a_{\lambda - 1} \right| + t^{\lambda} \left| a_{\lambda} \right| \right) \sin \alpha + \dots \\ &+ \left(t^{\lambda} \left| a_{\lambda} \right| - t^{\lambda + 1} \left| a_{\lambda + 1} \right| \right) \cos \alpha + t \left(t^{\lambda} \left| a_{\lambda} \right| + t^{\lambda + 1} \left| a_{\lambda + 1} \right| \right) \sin \alpha + \dots \\ &= t \left[\left(K \left| a_0 \right| - 2t^{\lambda} \left| a_{\lambda} \right| \right) \cos \alpha + K \left| a_0 \right| \sin \alpha + 2 \sin \alpha \sum_{j=1}^{\infty} \left| a_j \right| t^j \right] \\ &= t \left| a_0 \right| \left[\left(K - 2t^{\lambda} \left| \frac{a_{\lambda}}{a_0} \right| \right) \cos \alpha + K \sin \alpha + 2 \frac{\sin \alpha}{\left| a_0 \right|} \sum_{j=1}^{\infty} \left| a_j \right| t^j \right] \\ &= t \left| a_0 \right| M_4 \quad (\text{say}) \end{split}$$

where

(5)
$$M_{4} = \left(K - 2t^{\lambda} \left|\frac{a_{\lambda}}{a_{0}}\right|\right) \cos \alpha + K \sin \alpha + 2 \frac{\sin \alpha}{|a_{0}|} \sum_{j=1}^{\infty} |a_{j}| t^{j}$$

this implies

International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) An Online International Journal Available at <u>http://www.cibtech.org/jpms.htm</u> 2011 Vol. 1 (1) October-December, pp.76-79/Rasool Basagarah Article

Research Article

 $|G(z)| \le t |a_0| M_4 |z|$; for $|z| \le t$, by Schwartz's lemma hence from (4) we have

$$|F(z)| \ge |ta_0 - a_0 z + Ka_0 z| - |G(z)| \ge |a_0| |(K-1)z + t| - = |z| |a_0| M_4 >0$$

if

(6)
$$\left|z\right|M_{4} < \left|\left(K-1\right)z+t\right|.$$

Since it is easy to verify that the region defined above is precisely the disk

(7)
$$\left| z: \left| z - \frac{(K-1)t}{M_4^2 - (K-1)^2} \right| < \frac{M_4 t}{M_4^2 - (K-1)^2} \right|$$

it follows from (6) that F(z) and hence f(z) does not vanish in the disk defined by (7). This completes the proof of Theorem 1.

REFERENCES

Shah W.M and Liman A (2007). On Eneström-Kakeya theorem and related Analytic Functions, *Proceedings of the Indian Academy of Sciences (Math Science)* **117**(3) 359-370.

Rather N.A and Ahmad S.S (2007). A remark on the generalization of EnestrÖm -Kakeya theorem. *Journal of Analysis and Computation* **3**(1) 33-41

Aziz A and Shah W.M (1998). On the Zeros of Polynomials and related Analytic functions, *Glasnik Matematicki* 33 173-184.

Aziz A. and Mohammad Q.G (1980). On the zeros of certain class of polynomial and related analytic functions. *Journal of Mathematical Analysis and Application* **75** 495-502.

Govil N.K and Rahman Q.I (1968). On the Eneström- Kakeya theorem, *Tohoku Mathematical Journal*, 20 126-136.