## Research Article

# ON THE LOCATION OF ZEROS OF A POLYNOMIAL 

*Tawheeda Rasool<br>Department of Mathematics, National Institute of Technology, India - 190006<br>*Author for Correspondence


#### Abstract

In this paper we prove a result concerning the distribution of the zeros of a polynomial in the complex plane. From our result a variety of interesting results can be deduced by a fairly uniform procedure.


Key Words: Polynomials, Zeros, Analytic functions.
Mathematics Subject classification (1991): 30C10, 30C15

## INTRODUCTION

Theorem A: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial with complex coefficients. If $\operatorname{Re} a_{j}=\alpha_{j}$ and $\operatorname{Im} a_{j}=\beta_{j}$ for $j=0,1,2, \ldots, n, a_{n} \neq 0$ such that for some $k \geq 1, \lambda \geq 1$

$$
\begin{gathered}
K \alpha_{n} \geq \alpha_{n-1} \geq \ldots \geq \alpha_{1} \geq \alpha_{0}, \\
K \beta_{n} \geq \beta_{n-1} \geq \ldots \geq \beta_{1} \geq \beta_{0}
\end{gathered}
$$

then $P(z)$ has all its zeros in

$$
\begin{equation*}
|z+(K-1)| \leq \frac{\left\{K\left(\alpha_{n}+\beta_{n}\right)-\left(\alpha_{0}+\beta_{0}\right)+\left|\alpha_{0}\right|\right\}}{\left|a_{n}\right|} \tag{1}
\end{equation*}
$$

Aziz and Mohammad [1980] extended EnestrÖm-Kakeya Theorem to the class of Analytic functions $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ (not identically zero) with its coefficients $a_{i}$ satisfying a relation analogous to that of EnestrÖm-Kakeya and proved the following theorem.
Theorem B: Let $f(z)=\sum_{j=0}^{\infty} a_{j} z^{j} \neq 0$ be analytic in $|z| \leq t$. If $a_{j}>0$ and $a_{j-1}-t a_{j} \geq 0, j=1,2,3, \ldots$ then $f(z)$ does not vanish in $|z|<t$.
Aziz and Shah [1998] relaxed the hypothesis of Theorem B and proved the following.
Theorem C: If $f(z)=\sum_{j=0}^{\infty} a_{j} z^{j} \neq 0$ be analytic in $|z|<t$ such that for some $k \geq 1$

$$
k a_{0} \geq t a_{1} \geq t^{2} a_{2} \geq \ldots .
$$

then $f(z)$ does not vanish in

$$
\left|z-\left(\frac{K-1}{2 K-1}\right) t\right| \leq \frac{K t}{2 K-1}
$$

Shah and Liman [2007] proved the following result concerning the location of zeros of analytic function.

## Research Article

Theorem D: Let $f(z)=\sum_{j=0}^{\infty} a_{j} z^{j} \neq 0$ be analytic in $|z|<t$. If for some $k \geq 1$,

$$
k\left|a_{0}\right| \geq t\left|a_{1}\right| \geq t^{2}\left|a_{2}\right| \geq \ldots,
$$

and for some $\beta$,

$$
\left|\arg a_{j}-\beta\right| \leq \alpha \leq \frac{\pi}{2}, j=0,1,2, \ldots,
$$

then $f(z)$ does not vanish in

$$
\begin{equation*}
\left|z-\frac{(K-1) t}{M^{2}-(K-1)^{2}}\right|<\frac{M t}{M^{2}-(K-1)^{2}}, \tag{2}
\end{equation*}
$$

where

$$
M=K(\cos \alpha+\sin \alpha)+2 \frac{\sin \alpha}{\left|a_{0}\right|} \sum_{j=1}^{\infty}\left|a_{j}\right| t^{j}
$$

In this paper we prove the following result which not only generalizes Theorem D but in particular cases reduces to Theorem C and Theorem B. More precisely we prove
Theorem 1: Let $f(z)=\sum_{j=0}^{\infty} a_{j} z^{j} \nexists 0$ be analytic in $|z| \leq t$. If for some $K \geq 1$

$$
K\left|a_{0}\right| \geq t\left|a_{1}\right| \geq t^{2}\left|a_{2}\right| \geq \ldots \geq t^{\lambda}\left|a_{\lambda}\right| \leq t^{\lambda+1}\left|a_{\lambda+1}\right| \leq \ldots
$$

and for some real $\beta$

$$
\left|\arg a_{j}-\beta\right| \leq \alpha \leq \frac{\pi}{2}, j=0,1,2, \ldots,
$$

then $f(z)$ does not vanish in

$$
\begin{equation*}
\left|z-\frac{(K-1) t}{M_{4}^{2}-(K-1)^{2}}\right|<\frac{M_{4} t}{M_{4}^{2}-(K-1)^{2}}, \tag{3}
\end{equation*}
$$

where

$$
M_{4}=\left(K-2 t^{\lambda}\left|\frac{a_{\lambda}}{a_{0}}\right|\right) \cos \alpha+K \sin \alpha+2 \frac{\sin \alpha}{\left|a_{0}\right|} \sum_{j=1}^{\infty}\left|a_{j}\right| t^{j}
$$

Remark 1.1: If we let $\lambda \rightarrow \infty$ in Theorem 1 we get Theorem D. For $\lambda \rightarrow \infty, \alpha=\beta=0$ Theorem 1 reduces to Theorem C and for $\lambda \rightarrow \infty, \alpha=\beta=0, K=1$ Theorem 1 reduces to Theorem B We need the following lemma [1968] for the proof of the above Theorem.
Lemma: If $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree $n$ such that for some real $\beta$
$\left|\arg a_{j}-\beta\right| \leq \alpha \leq \frac{\pi}{2}, \quad j=0,1,2, \ldots n$ then for some $t>0$

$$
\left|t a_{j}-a_{j-1}\right| \leq\left(|t|\left|a_{j}\right|-\left|a_{j-1}\right|\right) \cos \alpha+\left(|t|\left|a_{j}\right|+\left|a_{j-1}\right|\right) \sin \alpha .
$$

## Research Article

Proof of Theorem 1: Since $f(z)$ is analytic function in $|z| \leq t$ therefore $\lim _{j \rightarrow \infty} a_{j} z^{j}=0$. Now consider the function

$$
\begin{align*}
F(z) & =(z-t) f(z) \\
& =(z-t)\left(a_{0}+a_{1} z+a_{2} z^{2}+\ldots a_{\lambda} z^{\lambda}+\ldots\right) \\
& =-t a_{0}+\left(a_{0}-t a_{1}\right) z+\left(a_{1}-t a_{2}\right) z^{2}+\ldots \\
& =-t a_{0}+a_{0} z-K a_{0} z+\left(K a_{0}-t a_{1}\right) z+\sum_{j=2}^{\infty}\left(a_{j-1}-t a_{j}\right) z^{j} \\
& =-t a_{0}+a_{0} z-K a_{0} z+G(z), \tag{4}
\end{align*}
$$

where

$$
G(z)=\left(K a_{0}-t a_{1}\right) z+\sum_{j=2}^{\infty}\left(a_{j-1}-t a_{j}\right) z^{j}
$$

clearly $G(z)$ is analytic,$G(0)=0$ and $|z|=t$

$$
\begin{aligned}
|G(z)|= & \left|\left(K a_{0}-t a_{1}\right) z+\sum_{j=2}^{\infty}\left(a_{j-1}-t a_{j}\right) z^{j}\right| \\
\leq & t\left(K a_{0}-t a_{1}\right) \mid+t \sum_{j=2}^{\infty}\left(a_{j-1}-t a_{j}\right) t^{j-1} \\
\leq & t\left(K\left|a_{0}\right|-t\left|a_{1}\right|\right) \cos \alpha+t\left(K\left|a_{0}\right|+t\left|a_{1}\right|\right) \sin \alpha \\
& +\left(t\left|a_{1}\right|-t^{2}\left|a_{2}\right|\right) \cos \alpha+t\left(t\left|a_{1}\right|+t^{2}\left|a_{2}\right|\right) \sin \alpha \\
& +\left(t^{2}\left|a_{2}\right|-t^{3}\left|a_{3}\right|\right) \cos \alpha+t\left(t^{2}\left|a_{2}\right|+t^{3}\left|a_{3}\right|\right) \sin \alpha+\ldots+ \\
& +\left(t^{\lambda-1}\left|a_{\lambda-1}\right|-t^{\lambda}\left|a_{\lambda}\right|\right) \cos \alpha+t\left(t^{\lambda-1}\left|a_{\lambda-1}\right|+t^{\lambda}\left|a_{\lambda}\right|\right) \sin \alpha \\
& +\left(t^{\lambda}\left|a_{\lambda}\right|-t^{\lambda+1}\left|a_{\lambda+1}\right|\right) \cos \alpha+t\left(t^{\lambda}\left|a_{\lambda}\right|+t^{\lambda+1}\left|a_{\lambda+1}\right|\right) \sin \alpha+\ldots \\
= & {\left[\left(\left(K\left|a_{0}\right|-2 t^{\lambda}\left|a_{\lambda}\right|\right) \cos \alpha+K\left|a_{0}\right| \sin \alpha+2 \sin \alpha \sum_{j=1}^{\infty}\left|a_{j}\right|^{j}\right]\right.} \\
= & t\left|a_{0}\right|\left[\left(K_{j}-2 t^{\lambda}\left|\frac{a_{\lambda}}{a_{0}}\right|\right) \cos \alpha+K \sin \alpha+2 \frac{\sin \alpha}{\left|a_{0}\right|} \sum_{j=1}^{\infty}\left|a_{j}\right|^{j}\right] \\
= & t\left|a_{0}\right| M_{4} \quad(\operatorname{say})
\end{aligned}
$$

where

$$
\begin{equation*}
M_{4}=\left(K-2 t^{\lambda}\left|\frac{a_{\lambda}}{a_{0}}\right|\right) \cos \alpha+K \sin \alpha+2 \frac{\sin \alpha}{\left|a_{0}\right|} \sum_{j=1}^{\infty}\left|a_{j}\right|^{j} \tag{5}
\end{equation*}
$$

this implies

## Research Article

$$
|G(z)| \leq t\left|a_{0}\right| M_{4}|z| ; \text { for }|z| \leq t, \text { by Schwartz's lemma }
$$

hence from (4) we have

$$
\begin{aligned}
|F(z)| & \geq\left|t a_{0}-a_{0} z+K a_{0} z\right|-|G(z)| \\
& \geq\left|a_{0}\right||(K-1) z+t|-=|z|\left|a_{0}\right| M_{4} \\
& >0
\end{aligned}
$$

if

$$
\begin{equation*}
|z| M_{4}<|(K-1) z+t| . \tag{6}
\end{equation*}
$$

Since it is easy to verify that the region defined above is precisely the disk

$$
\begin{equation*}
\left[z:\left|z-\frac{(K-1) t}{M_{4}^{2}-(K-1)^{2}}\right|<\frac{M_{4} t}{M_{4}^{2}-(K-1)^{2}}\right] \tag{7}
\end{equation*}
$$

it follows from (6) that $F(z)$ and hence $f(z)$ does not vanish in the the disk defined by (7). This completes the proof of Theorem 1.

## REFERENCES

Shah W.M and Liman A (2007). On Eneström-Kakeya theorem and related Analytic Functions, Proceedings of the Indian Academy of Sciences ( Math Science) 117(3) 359-370.
Rather N.A and Ahmad S.S (2007). A remark on the generalization of EnestrÖm -Kakeya theorem. Journal of Analysis and Computation 3(1) 33-41
Aziz A and Shah W.M (1998). On the Zeros of Polynomials and related Analytic functions, Glasnik Matematicki 33 173-184.
Aziz A. and Mohammad Q.G (1980). On the zeros of certain class of polynomial and related analytic functions. Journal of Mathematical Analysis and Application 75 495-502.
Govil N.K and Rahman Q.I (1968). On the Eneström- Kakeya theorem, Tohoku Mathematical Journal, 20 126-136.

