Research Article

PREVALENCE OF PARASITIC INTESTINAL INFECTIONS IN A TERTIARY CARE INSTITUTE IN INDIA

Archa Sharma¹, *Pragya Agarwala² and Kamal Sharma³

¹Department of Microbiology, All India Institute of Medical Sciences, Bhopal ²Department of Microbiology, All India Institute of Medical Sciences, Raipur ³Department of Cardiology, U. N. Mehta Institute of Cardiology and Research Centre, Ahmedabad, Gujarat, India

Author for Correspondence: *dr.pragya.ranjan@gmail.com

ABSTRACT

Gastrointestinal infections can be due to viral, bacterial, parasitic and fungal agents. They are the most common cause of diarrhoea worldwide and the leading cause of death in childhood in the developing world. Significant morbidity is associated with these infections. The parasitic causes of intestinal infections vary according to age group, rural and urban areas and socioeconomic and standard of hygiene in the community.

The study aimed to determine the prevalent bacterial and parasitic agents of diarrhoea in India. It was cross-sectional study was done at a tertiary care institute in India during 2016-17. Stool samples were received from patients of all age groups and processed for parasitological identification by microscopy. A total of 1401 stool samples were received during the study period. Parasites were identified in 93 (6.63%) of the cases. *Giardia duodenalis* seen in 52 (55.91%)) and *Entamoeba histolytica* 46(49.46%). were the most commonly identified parasites. *Strongyloides stercoralis* and *Hymenolepis nana* was seen in two cases each. *Cytoisospora belli* was seen in one sample .Protozoan parasites were the most commonly prevalent parasites in the samples received in the laboratory. Low prevalence of soil transmitted helminths could be due to mass drug administration, improved living conditions in urban area. *Strongyloides* infestation was associated with use of chronic steroids in both cases.

INTRODUCTION

Gastrointestinal infections are the most common cause of diarrhoea worldwide and the leading cause of death in childhood in the developing world. The etiology of these infections is varied and can be viral, bacterial, parasitic and fungal agents. Intestinal parasitic infections(IPI's) are commonest cause of diarrhoeas globally endemic and have been described as constituting the greatest single worldwide cause of illness and disease (Norhayati et al., 2003). Parasitic infections are linked to poor sanitation, lack of safe and potable water and improper hygiene. The frequency of parasitic infections varies with age and sex of general population. Intestinal parasitic infections are more common in children and leads to nutritional deficiency, anemia, growth retardation and impaired learning ability (Norhayati et al., 2003; and Easton, 1999). The purpose of this study was undertaken to know the prevalence of intestinal parasitic infections soil-transmitted helminths (STHs) such as Ascaris lumbricoides, Trichuris trichiura and hookworms, the most common intestinal parasites. Ascaris lumbricoides is the largest and the most common helminth parasitizing the human intestine and currently infects about 1 billion people worldwide (Easton, 1999) Hymenolepis nana is the most common parasitic cestode prevalent globally. Giardia duodenalis/Giardia intestinalis, previously known as Giardia lamblia, causing giardiasis, is the most prevalent protozoan parasite worldwide with about 200 million people being currently infected.(5)Another common intestinal protozoan is Blastocystis hominis whose parasitic status is under debate (Easton, 1999).

About one third of the world, more than two billion people, are infected with intestinal parasites (Wani *et al.*, 2007). Intestinal parasitic infections are rarely a cause death but because of the size of the problem, the global number of related deaths is substantial. About 39 million disability adjusted life years (DALYs) are attributed to IPIs and these infectious thus represent a substantial economic burden.(8) The

Research Article

purpose of this study was undertaken to know the prevalence of intestinal parasitic infections in our region.

MATERIALS AND METHODS

This was an observational study undertaken from period September 2016 to August 2017. Stool samples received in our laboratory from both out patients and inpatients treated at the hospital, all age group and both sexes, were included in this study. As this was not a prevalence based study, we considered only those cases that were referred by the clinicians to the laboratory for stool examination. Majority of these patients presented with chief complaints of bloating, pain abdomen, indigestion, skin irritation, weakness and passage of mucous in stool. Samples were collected in wide mouthed containers provided by the Department of Microbiology containing no preservative and were transported to the laboratory within 2-3 hours of collection. The stool samples were examined within 1-2 hours of collection. Stool samples were examined grossly for color, consistency, presence or absence of blood, mucus and worms. Routine stool microscopic examination of saline and iodine preparation was done for red blood cells, pus cells, trophozoites and cysts of protozoa and ova of helminthes. Parasites were identified under low and high power of microscope. Modified acid fast stain was done to visualize oocysts of coccidian parasites. The percentage of the parasites were calculated to find out prevalence of parasitic infections and data were analysed for interpretation.

RESULTS

Total 1401 stool samples were included in present study, out of which 93 (6.6%) were positive either for Protozoal or Helminthic infections. Protozoan infection was found to be more common than helminthic infection. *Giardia duodenalis* infection was commonest in protozoal infection constituting 52 (55.91%), followed by *Entamoeba histolytica* 46(49.46%). *Hymenolepis nana* and *Strongyloides stercoralis* (Fig.2) were seen in two cases (2.15%) each. *Cytoisospora belli* (Fig.3) was seen in one sample (1.07%) (Fig.1).

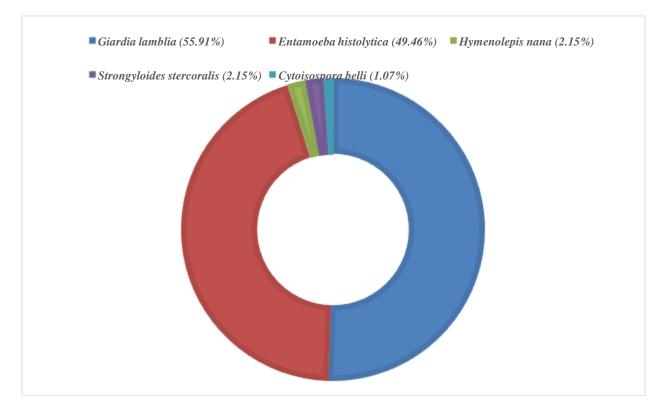


Figure 1: Distribution of Parasitic Infections

Research Article

Figure 2: Larvae of S. stercoralis

Figure 3: Oocysts of C. belli

DISCUSSION

This study showed wide spectrum of IPIs prevalent in this part of the country. The worldwide endemicity of IPIs has added to the global health burden, often crippling about 450 million people, mostly children and women in reproductive age group (Quihui *et al.*, 2006) Though, poor socioeconomic and unhygienic conditions have been largely implicated for this global burden, their ubiquity has been demonstrated not only in studies from rural and slum areas but also from urban areas (Shubha and Fatima 2011). Rapid industrialization and mass movement of population from rural to urban areas has made situations worse, thus facilitating the rapid spread of IPI (Salam and Azam, 2017).

In this study, we found a prevalence of 6.6% of IPIs in our locality, which is comparably low against studies reported elsewhere. While prevalence of 38%, 51.5% and 31.5% has been reported from rural areas of Ghaziabad (Pullan *et al.*, 2010), Karnataka (Shubha and Fatima 2011) and Pauri Garhwal (Salam and Azam, 2017) respectively by survey of target population, prevalence of 12.5% and 15.19% has been reported from urban slum areas of Chandigarh (Purbey and Banerjee, 2017) and central `Gujarat respectively. Likewise, prevalence of IPIs in Nepal and Sri Lanka has been reported as 29.4% and 34.56% respectively. In context to our finding, low prevalence of 13.4% has been reported in a study from our vicinity.

Giardia duodenalis_was the most common protozoan isolated. The prevalence of Giardiasis is 3-7% in developed countries, it is as high as 20-30% in developing countries (Saboyá, 2013). Giardiasis can present with a spectrum of signs and symptoms which are mostly self-limiting. In context to school children, the extra intestinal and long term consequences of Giardiasis is of recent interest and are equally alarming (Halliez and Buret, 2013). Ocular complications, arthritis, skin allergies, myopathy can occur in affected children besides the well-established complications like failure to thrive, stunting and growth retardation, cognitive disorders and chronic fatigue. All these factors are of immense public health importance owing to the high occurrence of Giardiasis in young children

Entamoeba sp. was the most prevalent parasite in this study. It could not be commented whether the cysts of Entamoeba sp. were from pathogenic variety (E.histolytica) or non-pathogenic variety (E. dispar/moshkovskii). Motile trophozoites were also observed in 15% of the stool samples positive for Entamoeba sp.

Another important aspect revealed in this study should be discussed. STHs account for 27% of entire school-age and preschool-age children population worldwide (Kumar *et al.*, 2014) Consequently in 2001 the World Health Assembly resolved to control them by mass scale drug administration especially in less developed countries (Halliez and Buret, 2013) WHO recommended MDA to all residents of endemic areas with frequency once or twice a year based on the prevalence (Kumar *et al.*, 2014). The widespread administration of anti-helminthic drugs have already shown striking reduction in STHs burden in some

CIBTech Journal of Microbiology ISSN: 2319-3867 (Online) An Online International Journal Available at http://www.cibtech.org/cjm.htm 2018 Vol.7 (1) January-March, pp.11-14/Sharma et al.

Research Article

parts of India. This is in concurrence with the finidings of our study where the prevalence of these infections was very low.

Conclusion

The study revealed the widespread distribution of intestinal parasites among symptomatic and asymptomatic patients from various age groups. The reduced prevalence of soil transmitted nematode infections due to effects of anti-helminthics and the relative higher prevalence of protozoal infection (Giardiasis) as expected has been explicitly demonstrated in this study. Widespread cleanliness campaigns, awareness among the low socioeconomic population and continued mass deworming will definitely have an impact in reducing the prevalence of IPIs in the near future.

Source of Support

Department of Microbiology, All India Institute of Medical Sciences, Bhopal.

REFERENCES

Easton A (1999). Intestinal worms impair child health in the Philippines. BMJ 23(7178) 214.

Halliez MCM and Buret AG (2013). Extra-intestinal and long term consequences of Giardia duodenalis infections. *World Journal of Gastroenterology* **19**(47) 8974–85.

Kumar H, Jain K and Jain R (2014). A study of prevalence of intestinal worm infestation and efficacy of anthelminthic drugs. *Medical Journal of Armed Forces India* **70**(2) 144–8.

Mehraj V, Hatcher J, Akhtar S, Rafique G, Beg MA (2008). Prevalence and Factors Associated with Intestinal Parasitic Infection among Children in an Urban Slum of Karachi. *PLOS ONE* **10**(11).

Norhayati M, Fatmah MS, Yusof S, Edariah AB (2003). Intestinal parasitic infections in man: a review. *Medical Journal of Malaysia* **58**(2) 296–305.

Pullan RL, Smith JL, Jasrasaria R and Brooker SJ (2014). Global numbers of infection and disease burden of soil transmitted helminth infections in 2010. *Parasites and Vectors* **21**(7) 37.

Purbey MK, Banerjee T (2017). Spectrum of Intestinal Parasitic Infections (IPIs) in a Tertiary Care Hospital in Varanasi: Need to Protect School aged Children from Giardia Infection. *National Journal of Lab Medicine* 65.

Quihui L, Valencia ME, Crompton DW, Phillips S, Hagan P, Morales G et al., (2006). Role of the employment status and education of mothers in the prevalence of intestinal parasitic infections in Mexican rural schoolchildren. BMC Public Health 6(6) 225.

Salam N and Azam S (2017). Prevalence and distribution of soil-transmitted helminth infections in India. BMC Public Health [Internet]. [cited 2018 Apr 19];17. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5311856/

Saboyá MI, Catalá L, Nicholls RS and Ault SK (2013). Update on the Mapping of Prevalence and Intensity of Infection for Soil-Transmitted Helminth Infections in Latin America and the Caribbean: A Call for Action. *PLoS Neglected Tropical Diseases* **7**(9) 2419.

Shubha DS and Fatima F (2011). A coprological survey for assessing intensity of parasitic infection in school children: Cross-sectional study. *Tropical Parasitology* **1**(2) 88.

Wani SA, Ahmad F, Zargar SA, Ahmad Z, Ahmad P, Tak H (2007). Prevalence of intestinal parasites and associated risk factors among schoolchildren in Srinagar City, Kashmir, Indian Journal of Parasitology 93(6) 1541–3.