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ABSTRACT 

The Erlang distribution is the distribution of sum of exponential variates. The Erlang variate becomes 

Gamma variate when its shape parameter is an integer (Evans et al., 2000). In the literature, various 

authors discussed the properties and estimation of Erlong distribution e.g., Harischandra and Rao (1988), 

Bhattacharyya and Singh (1994), Wiper (1998), Jain (2001), Nair et al., (2003), Suri et al., (2009), 

Damodaran et al., (2010). In this paper, we propose a new generalization of Erlang distribution then 

discuss the Bayesian estimation of Erlang distribution using different priors. We illustrate the results 

using a simulation study as well as by doing real data analysis. 
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INTRODUCTION 

The origin of queuing theory was in 1909, when A.K. Erlang (1878-1929) published his fundamental 

paper relating to the study of congestion in telephone traffic (Brockmeyer et al., 1948). The literature on 

the theory of queues and on the diverse field of its applications has grown tremendously over the years. 

The analysis for such an Erlangian queue is now folklore in the queuing literature. The Erlang distribution 

is the distribution of sum of exponential variates.  

This distribution can be expressed as waiting time and message length in telephone traffic. If the duration 

of individual calls are exponentially distributed then the duration of succession of calls is the Erlang 

distribution. The Erlang variate becomes Gamma variate when its shape parameter is an integer (Evans et 

al., 2000).  

In the literature, we observe that Harischandra and Rao (1988) discussed some problems of classical 

inference for the Erlangian queue. Bhattacharyya and Singh (1994) obtained Bayes estimator for the 

Erlangian queue under two prior densities. Wiper (1998) studied for Er/M/1 and Er/M/c queues under 

Bayesian setup and estimated equilibrium probabilities of the queue size and waiting time distributions 

using conditional Monte-Carlo simulation methods.  

Jain (2001) discussed the problem of the change point for the inter arrival time distribution in the context 

of exponential families for the Ek/GIc queuing system and obtained Bayes estimates of the posterior 

probabilities and the positions of change from the Erlang distribution. Nair et al., (2003) studied Erlang 

distribution as a model for ocean wave periods and obtained different characteristics of this distribution 

under classical set up.  

Suri et al., (2009) used Erlang distribution to design a simulator for time estimation of project 

management process. Damodaran et al., (2010) obtained the expected time between failure measures. 

Further, they showed that the predicted failure times are closer to the actual failure times. 

In view of the literature available on Erlang distribution and its applications, we try to generalize it from a 

new proposed model (Bilal and Khan, 2011) and discuss its Bayes estimation. 

The probability density function (pdf) of Erlang distribution is given by 
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Proposed Method of Generalization of Erlang Distribution 
We now obtain Erlang distribution (1.1) by a new method as given below: 

Suppose F(u) be any non-negative continuous function of u defined in the interval 0<u<t and  if α is any 

given positive real number such that 
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is finite. Then the function 

t x0 ;
,

/)(1-x )( 



F

AxFx                                                                   (2.2) 

 = 0, elsewhere                                                                  

is a probability density function (pdf) of X, a continuous random variable. 

The rth moment of the distribution about the origin is 
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Taking F(u) = exp(-uβ-1) with u = x β and letting t→∞ in (2.1), it follows that      
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Using (2.3) in (2.2), we get 
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which is the probability density function (pdf) of Erlang distribution with parameters α and β. 

Bayes Estimation of Erlang Distribution 

Bayesian statistics is an approach to statistics which formally seeks use of prior information with the data, 

and Bayes Theorem provides the formal basis for making use of both sources of information in a formal 

manner. Bayes theorem is stated as 

Posterior α Likelihood × Prior 
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The prior is the probability of the parameter and represents what was thought before seeing the data. The 

likelihood is the probability of the data given the parameter and represents the data now available. The 

posterior represents what is thought given both prior information and the data just seen.  

In many practical situations, the information about the shape and scale parameters of the sampling 

distribution is available in an independent manner.  

Therefore, here it is assumed that the parameters α and β are independent a priori and a  prior distributions 

chosen in this paper is Truncated Poisson distribution as a prior for shape parameter and Inverted Gamma 

distribution as a prior for scale parameter. The loss function considered in this paper is squared error loss 

function. The squared error loss function for the shape parameter c and the scale parameter b are defined 

as 
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which is symmetric and  ,   and 
^

 , 
^

 represent the true and estimated values of the parameters.  

Posterior Distributions under Different Informative Priors 

The posterior distributions using different informative priors for unknown parameters α (shape) and β 

(scale) are derived in the following subsequent subsections.  

The probability density function (pdf) of Erlang distribution is given by 
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= 0 elsewhere,                   α = 1,2,3, …, β>0 

Let X1, X 2 , ..., X n be a random sample from the Erlang distribution, the likelihood function of the 

sample observations: x : x1, x2 ,..., xn is defined as 
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When Shape Parameter α is Unknown and Scale Parameter β is Known 

We assume prior for shape parameter α the truncated Poisson distribution, given by 
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 α = 1,2,3, …, β>0 

By combining the likelihood function and the prior density, the posterior distribution of α given data is 
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                                                                    α = 1,2,3, …, 

The Bayes estimator under squared error loss function with the prior  );( 11 g is given by 
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The posterior variance of Bayes estimator is given by 
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When Scale Parameter β is Unknown and Shape Parameter α is Known 

We choose Inverted Gamma distribution, the prior for scale parameter β as given by 
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                                                       β>0, (α1 , β1)>0.  

The posterior density after combining likelihood and prior is given by 
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The Bayes estimator under squared loss function is given by                                        
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The posterior variance of Bayes estimator   
1
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Simulation Study: In the simulation study, we have chosen n=50 for several values of parameters. The 

simulation program was written in S-Plus/R software. The results obtained y using simulation study is 

presented below: 
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Table 1: Bayes Estimators and their Variances under Truncated Poisson Distribution for n=50 

 α =1  α =3  α =6  α =9 

 
1

^

x   )( 1

^

xV    
1

^

x   )( 1

^

xV 
 

 
1

^

x   )( 1

^

xV    
1

^

x   )( 1

^

xV   

1 1.3744×10-13 3.00001 0.00005 5.9586 0.0436 8.7129 0.21342 

1 2.7377×10-13 3.00005 0.00008 5.9818 0.0257 8.8304 0.1503 

1 4.1142×10-13 3.00010 0.00011 5.9813 0.0262 8.8764 0.1239 

1 5.4810×10-13 3.00014 0.00015 5.9867 0.0254 8.8956 0.1078 

1 6.8334×10-13 3.00018 0.00017 6.0013 0.0241 8.9284 0.0995 

1 8.2256×10-13 3.00022 0.00021 6.0045 0.0164 8.9674 0.0937 

1 9.5788×10-13 3.00024 0.00025 6.0069 0.0250 8.9787 0.0912 

1 1.0879×10-13 3.00029 0.00030 6.0107 0.0215 8.9992 0.0943 

1 1.2336×10-13 3.00027 0.00032 6.0129 0.0234 9.0076 0.0911 

 

Table 2: Bayes Estimators and their Variances under Inverted Gamma Distribution for n=50 

 β=1  β =3  β =6  β =9 
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1.003010 0.00328 3.00624 0.03020 6.00229 0.12047 9.00431 0.27102 

 1.00290 0.00327 3.00101 0.02996 5.99052 0.12004 8.94231 0.26789 

1.00298 0.00325 2.99241 0.02983 5.98657 0.11941 8.91238 0.26683 

1.00307 0.00324 2.99012 0.02972 5.98001 0.11873 8.90231 0.26664 

1.00306 0.00323 2.98023 0.02968 5.97541 0.11753 8.89474 0.26510 

1.00305 0.00322 2.97432 0.02907 5.96231 0.11634 8.89002 0.26001 

1.00304 0.00321 2.96326 0.02875 5.94537 0.11562 8.88321 0.25767 

1.00302 0.00320 2.96103 0.02858 5.90231 0.11432 8.83762 0.25546 

1.00301 0.00319 2.95431 0.02835 5.86735 0.11310 8.80023 0.25241 

 

Read Data Analysis 

To check the validity of the model, we consider the survival time (in weeks) for 20 male rats (Lawless, 

2003) that were exposed to a high level of radiation. The data is 152, 152, 115, 109, 137, 88, 94, 77, 160, 

165, 125, 40, 128, 123, 136, 101, 62, 153, 83 and 69. The three goodness of fit test reveal that 

(i) Kolmogrov-Smirnov test: Test statistic: 0.1478 with p-value 0.720. 

(ii) Anderson-Darling test: Test statistic: 0.4921. 

(iii) Chi-square test: Test statistic: 0.7832 with p-value 0.675. 

From above tests, it is evident that the Erlang distribution with parameters α =10 and β =11.29 fits the 

data set well. It is observed that results from this data analysis echo the same pattern as found in the 

simulation study. The results obtained are in agreement with the earlier studies.  
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