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ABSTRACT 

All movement of molecules and macromolecules between the cytoplasm and the nucleus takes place 

through nuclear pore complexes (NPCs), very large macromolecular complexes that are the only channels 

connecting these compartments. mRNA export is mediated by multiple, highly conserved protein factors 

that couple steps of nuclear pre-mRNA biogenesis to mRNA transport. Mature messenger ribonucleo 

proteins (mRNPs) diffuse from sites of transcription to NPCs, although some active genes are positioned 

at the nuclear periphery where they interact physically with components of NPCs. As properly processed 

mRNPs translocate through the pore, certain mRNP proteins are removed, probably through the 

enzymatic action of the DEAD-box helicase Dbp5, which binds to Nup159 and Gle1, components of the 

cytoplasmic filaments of the NPC. Gle1 and the phosphoinositide IP6 activate Dbp5's ATPase activity in 

vitro and this could provide critical spatial regulation of Dbp5 activity in vivo. 
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INTRODUCTION 

The TREX (transcription/export) complex is a key player in the transport of mRNA from the nucleus to 

the cytoplasm. This complex is conserved from yeast to human, and a Drosophila counterpart was 

recently characterized. The two main constituents of the TREX complex are the stable multi-subunit THO 

complex and the mRNA export proteins UAP56 (Sub2 in yeast) and Aly (Yra1 in yeast). As discussed 

below, the THO complex plays a central role in recruiting these export proteins to the mRNA in both 

yeast and human. Despite the striking conservation in the structure and function of the TREX complex, 

studies in yeast provide strong evidence linking the TREX complex to transcription elongation and to co-

transcriptional recruitment of the mRNA export machinery. By contrast, studies in mammals provide 

compelling evidence linking the TREX complex to the splicing machinery and suggesting that that the 

TREX complex is recruited to mRNA during a late step in splicing. 

This review focuses on the evidence for the different TREX complex recruitment mechanisms as well as 

on the puzzles that remain regarding the export of naturally intronless mRNAs in mammals and spliced 

mRNAs in yeast. Further, it discusses about exciting new studies of the SR (serine/arginine-rich protein) 

family of splicing factors in mammals and related proteins in yeast that reveal a role for 

dephosphorylation of these proteins in mRNA export and the identification of a specific nuclear 

phosphatase in yeast. For a comprehensive discussion of the coupling between transcription, splicing and 

mRNA export, readers are referred to excellent reviews of these topics (Dimaano & Ullman, 2004; 

Erkmann & Kutay, 2004; Jensen et al., 2003; Vinciguerra & Stutz, 2004). 

mRNP Assembly is Essential for Export 
We have only a partial understanding of how the cell distinguishes an export-competent mRNP from one 

that should be retained in the nucleus for storage or degraded (Prasanth et al., 2005). Forming an mRNP 

is a complex process that begins co-transcriptionally and involves dozens of factors that participate in pre-

mRNA processing and packaging. Legrain and Rosbash (Legrain & Rosbash, 1989) showed that in yeast 

defects in the earliest steps of splicing, which prevented the pre-mRNA from associating with the splicing 

machinery, permitted export of unspliced mRNA, suggesting that association with the splicing machinery 

sequesters the mRNP physically until splicing has been completed. Several studies demonstrate that 

mRNA export requires proper 3′ processing, including addition of the poly(A) tail and binding of multiple 

molecules of the poly(A) binding protein, Pab1 (Brune et al., 2005; Dower et al., 2004; Dunn et al., 2005; 
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Hammell et al., 2002; Hilleren et al., 2001). Although some mRNAs can be exported if their 3′ ends are 

generated through the action of a ribozyme (Dower et al., 2004), this is a non-physiological situation. 

Two systems have been described in yeast that detect defective mRNPs (for reviews, see (Hieronymus et 

al., 2004; Milligan et al., 2005; Saguez et al., 2005)). One of these results in retention at sites of 

transcription in a process that is dependent on the nuclear exosome, a complex of several 3′-5′ 

exoribonucleases that ultimately degrades mRNPs that are not released for export (Hilleren et al., 2001; 

Jensen et al., 2001). A second surveillance system operates at NPCs and includes the myosin-like Mlp1 

and Mlp2 proteins (Galy et al., 2004; Vinciguerra et al., 2005). Structurally, Mlp proteins resemble the 

metazoan Tpr proteins to which they may be orthologous, and extend into the nuclear interior from the 

nuclear basket of the NPC, where they interact with Nup60 and the nuclear envelope protein Pml39 

(Palancade et al., 2005). Mlp1 interacts with Nab2, an mRNP protein important for proper pre-mRNA 

processing (Green et al., 2003). Through this and perhaps other interactions, mRNPs containing introns 

are retained in the nucleus. 

Karyopherins function as transport receptors by recognizing and binding to cargoes that carry nuclear 

transport signals and interact with NPCs (Harel & Forbes, 2004). Yeast Mex67 (TAP in metazoans) 

functions as the export receptor for mRNAs and becomes associated with the pre-mRNA through the 

actions of Sub2 (UAP56) and Yra1 (ALY/REF) (Aguilera, 2005; Reed & Cheng, 2005). mRNA export 

differs from transport of proteins and spliceosomal pre-RNAs in that there is no direct role for the small 

GTPase, Ran, in mRNA export. 

Transport of snRNAs 

Very little is known about the biogenesis of snRNAs in yeast (Lygerou et al., 1999). In higher eukaryotes, 

snRNAs are monomethylated at the 5′ end, which is a signal for nuclear export. Both the CBP80/20 

complex, which binds to the 5′ monomethyl cap, and Crm1 (snRNA export is inhibited by Rev NES 

peptides) appear to be involved in the export process (Fischer et al., 1995; Fischer & Luhrmann, 1990; 

Hamm & Mattaj, 1990). After arrival in the cytoplasm, the snRNA is hypermethylated and the Sm 

proteins assemble. This creates a bipartite nuclear import signal. Recently, one of the import factors that 

binds to the trimethyl cap has been identified and named snurportin (Huber et al., 1998). As importin α, 

snurportin acts as an adapter by binding to the hypermethylated 5′ cap structure and to importin β. In 

yeast, no evidence has been obtained that snRNAs leave the nucleus. Thus, yeast snRNPs may assemble 

inside the nucleus without export and re-import steps (Lygerou et al., 1999). 

Export Factors 
A group of evolutionarily conserved proteins classified as nuclear export factors or NXFs is responsible 

for exporting the majority of cellular mRNAs and a subset of viral RNAs to the cytoplasm (Izaurralde, 

2002). NXFs bear no resemblance to prototypical nuclear transport receptors of the importin–exportin 

(karyopherin) family (Fried & Kutay, 2003) and lack the characteristic Ran-binding domain found in all 

karyopherins. Binding of the GTP-bound form of the small GTPase Ran to importins and exportins 

determines the directionality of cargo transport through the NPC, and, importantly, this interaction with 

Ran is seminal to substrate binding and hence the efficient export of cargo molecules by exportins. In 

contrast, NXFs are recruited to nuclear mRNPs independently of Ran by different mechanisms. Similar to 

the prototypical export receptors, NXFs interact with nucleoporins thus mediating the interaction between 

the mRNA export cargo and components of the NPC required for translocation. 

Most NXF family members share the following functional properties: they associate with nuclear pores, 

have the ability to shuttle, and require heterodimerization with p15 for efficient interaction with NPC 

components (Herold et al., 2000; Katahira et al., 1999; Santos-Rosa et al., 1998). However, the reason 

behind the diversity of the metazoan NXF family has not yet been resolved. Despite the similarities in 

domain organization between different Drosophila NXFs, Dm NXF2 and NXF3 do not perform a 

redundant function to NXF1 because these two NXFs are insufficient to support growth of Drosophila S2 

cells in the absence of NXF1. Moreover, depletion of Dm NXF2 and NXF3 by RNAi did not cause an 

mRNA export phenotype. Therefore, it is currently unclear what the function, if any, of the remaining Dm 

NXFs in mRNA export is. Using reporter RNAs (Herold et al., 2000) and tethered RNAs (Yang et al., 
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2001), human NXF2 and NXF3, respectively, have been shown to possess mRNA export activity. 

However, the role of Hs NXF2 and 3 in the export of endogenous mRNA substrates has not yet been 

investigated. Both of these genes are highly expressed in the testis (Yang et al., 2001) and may therefore 

have a cell type-specific function in mRNA export. Little is known about the other human NXFs; 

however, in an interesting study, Hs NXF5 has been linked to a syndromic form of mental retardation 

(Jun et al., 2001), suggesting that it may function in the export of a specific subset of mRNAs or has a 

critical function in the brain. 

mRNA Export is Highly Regulated Event 

An important question is how mRNA export is regulated and how assembly and disassembly of export 

complexes is controlled. Interestingly, Tom1p, an ubiquitin E3 ligase associated with the SAGA complex 

(Saleh et al., 1998), is required for mRNA export. Indeed, mutations in Tom1p block the export of 

transcripts containing the shuttling mRNA binding protein Nab2p (Duncan et al., 2000; Green et al., 

2002). Genetic interactions further indicate a connection between Nab2p and the Sus1p–Thp1p–Sac3p 

complex, suggesting that post-translational modification by ubiquitin may regulate this pathway (Gallardo 

et al., 2003; Rodriguez-Navarro et al., 2004). Recent evidence by the Hurt and Dargemont labs shows 

that another ubiquitin E3 ligase, called Rsp5p, is also essential for mRNA export (Neumann et al., 2003; 

Rodriguez et al., 2003). The identification of specific substrates should indicate whether Rsp5p and 

Tom1p control distinct pathways and reveal how ubiquitin regulates mRNP biogenesis and export. 

A recent report by the Guthrie lab demonstrates that post-transcriptional modification by phosphorylation 

also contributes to mRNA export regulation (Gilbert & Guthrie, 2004). As mentioned above, this study 

identified Npl3p, an SR-like protein essential for mRNA export, as a new adaptor for the export receptor 

Mex67p. Npl3p is recruited to nascent mRNPs in its phosphorylated form but interacts with Mex67p only 

in its unphosphorylated form. Importantly, the authors show that Glc7p, a phosphatase essential for 

mRNA export, coordinates dephosphorylation of Npl3p with the release of the mRNP from the 3′-end 

processing machinery and the recruitment of Mex67p to the mRNP. Such a mechanism may ensure that 

only correctly 3′-end processed mRNPs become associated with the export receptor. After translocation, 

the cytoplasmic kinase Sky1p phosphorylates Npl3p, promoting the dissociation of Mex67p from the 

mRNP (Gilbert et al., 2001). These observations show that a cycle of cytoplasmic phosphorylation and 

nuclear dephosphorylation of Npl3p, and perhaps other shuttling SR proteins, regulates Mex67p-

dependent mRNA export (Izaurralde, 2004). 

Conclusions 

The TREX complex is conserved from yeast to human and functions in mRNA export. Despite this 

conservation, the complex appears to be recruited to mRNA by the transcription machinery in yeast and 

the splicing machinery in human. It makes more sense to load the export machinery onto spliced mRNA 

than onto unspliced pre-mRNA in the case of higher eukaryotes, which have numerous introns. And, 

conversely, it makes sense in yeast to make use of the transcription machinery for loading the export 

machinery, as most transcripts are not spliced. The obvious question raised is how to deal with the intron-

containing genes in yeast and the intron-lacking genes in higher organisms. Studies over the past year 

have revealed a conserved role for dephosphorylation of SR proteins in mRNA export, but how they, the 

TREX complex, or some as yet undetected adaptors interact and function in these processes remains to be 

determined. 
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