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ABSTRACT 

Pre-harvest sprouting (PHS) refers to germination of seeds in physiologically mature spikes prior to 

harvest. In northern part of Iran (Gorgan and Mazandaran), it is very common and occur three or four 

times per ten years. The highest damage due to PHS of wheat in north of Iran was about 22000 ha, 

causing severe economic losses and reduction in grain yield quality, test weight, grain functionality and 

seed viability. Sprouting in wheat induces the synthesis of enzymes like α, ß and total amylase, which 

influences grain yield and bread making quality. PHS also negatively affects starch and proteins. The 

results revealed that selected genotypes of spring wheat significantly differed on the basis of starch, 

proteins and activities of α, ß and total amylase, percentage and severity of PHS and yield during MI. 

After 21 days of MI starch and protein contents as well as yield was reduced highly. However, activities 

of total, α and ß-amylase, percentage of PHS and severity were increased as compared to 7 and 14 days of 

MI. Starch and protein had shown positive correlation while total, α and ß-amylase activity, percentage of 

PHS and severityhad shown negative correlation with grain yield after 21 days MI. MI. Starch, protein 

and duration MI showed negative direct effect, while the negative indirect effect was observed on grain 

yield due to total amylase activities. Regression analysis shown for starch, proline and yield were 

decreased but total amylase activity was increased after 7, 14 and 21 days of MI.  
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INTRODUCTION 

At present wheat crop is exposed to several biotic and abiotic factors like PHS, drought, salinity that 

contribute to losses in yield, grain quality and economic grain (Bi et al., 2014). Pre-harvest sprouting 

(PHS) in wheat is a serious problem in the regions of the world where the rainy season tends to overlap 

with the harvest season (Gerjets et al., 2010; Nakamura et al., 2011).  

The α-amylase widely exists and participates in many physiology processes in plants and hydrolyze starch 

to sugars.  

The expression of α-amylase affects the germination rate, cold tolerance and production of seed (Masojc 

and Milczarski, 2009).  

The relationship between α-amylase activity and PHS resistance very remarkable. The activity of α-

amylase increases quickly once the seed absorbs enough water and then promote the seed sprouting 

(Wang et al., 2008).  

The activity of α-amylase was significant different between the PHS resistant and sensitive varieties in 

wheat (Wang et al., 2008; Gao et al., 2013).  

Many spring wheat varieties are susceptible to pre-harvest sprouting (Biddulph et al., 2008). PHS 

susceptible cereal varieties typically lack adequate levels of seed dormancy to avoid early sprouting 

during wet harvest periods.  

It is generally induced during kernel development and depends on environmental conditions as well as on 

physiological, morphological and genetic properties of cereals.  

The understanding of physiological, morphological, enzymological and genetic factors during PHS is yet 

obscure.  
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Damage caused by PHS has often been associated with increased levels of α, amylase, ß and total amylase 

activities in the kernel. High α-amylase activity levels negatively affect the nutritional and end-use quality 

of grains (Mares and Mrva, 2008).  

Several tests assessing this damage due to PHS are based on α-amylase activity levels at harvest, contents 

of starch and proteins, morphology of spike and seed coat colour. Up till now very scanty work is 

available on the relationship between the PHS and α-amylase activity in wheat and barley (Lin et al., 

2008).  

The α-amylase activity, starch, sugars, carbohydrates and protein contents are the key factors involved in 

PHS of wheat genotypes. 

The level of α-amylase activity depends on the genotypes and environmental conditions as well as 

genotypes ×environment. In many wheat and rye genotypes, α-amylase activity remains low until harvest 

ripeness, whereas it may increase to excessive levels at harvest maturity in certain genotypes of triticale 

and wheat (Biddulph et al., 2008; Gao and Ayele, 2012).  

The aim of present study was to find out the correlation between levels of α, ß and total amylase activity 

along with starch and protein content in selected PHS tolerant and sensitive genotypes of wheat and its 

impact on grain. 

 

MATERIALS AND METHODS  

The field experiment was conducted using completely randomized block design with three replications in 

Autumn season in the year (2008-2012) at Agriculture Research Station, Baye Kola, using selected 

genotypes such as Nai60, N-80-19, N-87-12, N-86-12 and N-87-8 under different conditions of mist 

irrigation (7, 14 and 21 days). The analysis of starch (Thayumanavan and Sadasivam, 1984), protein 

(Lowry et al., 1951) and α, ß and total amylase (Sadasivam and Manikum, 1996) activity was attempted 

by using standard protocols. The data obtained was statistically analyzed using SPSS software (version 

16). 

Model Fitting 

The relationships between studied traits and MI were evaluated by fitting linear and non-linear regression 

models by SAS software. In this study a segmented model was applied as non-linear model which 

following as: 

Y = a + bxif x<x0          [1] 

Y = a + bx0 if x≥x0          [2] 

where Y is the studied physiological parameters, a is intercept, b is the rate of increase or decrease in 

studied traits, x0 is turning point between two phases and x is mist irrigation duration. The internal 

validity of the models was tested by coefficient of determination (R2). 

 

RESULTS AND DISCUSSION  

Effect of PHS on Physiological and Biochemical Parameters  

The results regarding mean comparison of effects of PHS on physiological and biochemical parameters in 

wheat genotypes presented in Table 1, revealed that by contrast, all the PHS sensitive genotypes in third 

step of MI showed lowest contents of starch, protein and highly reduced yield as compared to first and 

sconed MI.  

However, other variables in third step of MI, like total amylase, α-amylase and ß-amylase were higher 

than other two MI (first and sconed).  

The results also indicated that the contents of starch (19), protein (22.23) and yield (0.04) in highly PHS 

sensitive genotypes such as N-87-8 were significantly decreased during third step of MI. While total 

amylase (66.5), ß-amylase (34.25) and α-amylase activities (32.25) were highly stimulated during third 

step of MI. But the parameters such as starch (23), protein (30.26) and yield (0.5)in PHS tolerant 

genotypes such as N-86-12 were not negatively affected.  
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Table 1: Mean Comparison of Effects of PHS on Physiological Parameters in Wheat Genotypes 

Under Different MI 
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MI Genotypes 

7 

Nai60 140.0 a 2.300f 1.440e 100.0 a 3.440 h 0.8070a 

N-80-19 182.0 b 2.660 f 1.440e 95.90a 3.660 h 0.9070a 

N-87-12 140.0 b c d 3.990 f 5.540 cde 84.50ab 8.540fg h  0.8630a 

N-86-12 154.0 b c 2.660 f 2.990 de 98.20a 4.990g h 0.8030a 

N-87-8 135.00 c d e 2.440 f 3.660 de 79.30ab 5.660g h 0.8570a 

14 

       

Nai60 44.00 de 12.72d e 2.690 de 58.97bcd 14.41e f  0.8000a 

N-80-19 34.00 c d e 18.67b 16.630c d 48.98bcd 35.30c d 0.2520c 

N-87-12 32.00 c d e 18.15 b 16.63b 36.26cd 34.78 b 0.1600cd 

N-86-12 52.00 cd e 5.49 f 3.990cde 77.22abc 8.150 h 0.7200a 

N-87-8 38.00 d e 24.10c d 23.44b 37.15cd 47.54 d 0.1900cd 

21 

       

Nai60 37.0 de 17.36 c d 7.130de 38.94d 20.50 e 0.1500cd 

N-80-19 33.0 de 22.06b 20.540 c 28.59d 42.61b c  0.1070cd 

N-87-12 15.0 e 22.86 a 20.72 a 19.74 d 42.58 a 0.06000cd 

N-86-12 23.0 e 8.920 e f 6.150 e 30.26bcd 14.98 f g 0.5000b 

N-87-8 19.0 e 34.25 c 32.25 ab 22.23d 66.50 b c 0.0400d 

 

Relationship Regression between MI X Starch in Different Genotypes 

Starch ranged from 15 to 182 mg gr across genotypes (table 1). A segmented model was fitted for 

describe relationship between starch and days after MI for all genotypes. The results indicated that 

genotypes were approximately similar in terms of parameters. Therefore, after starting of MI the starch 

values reduced linearly (-16 mg gr) with day to about 15 days and then the values of starch were constant 

to 21 days after MI. There is an exception only for N-80-19 genotype, which starch value was mostly 

reduced from other genotypes (-21 mg gr per day) (Table 2; Figure 1). The tolerant variety showed more 

accumulation of starch as compared to PHS sensitive genotypes of wheat.  

 

 
Figure 1: Linear Regression between MI × Starch In Five Genotypes Of Wheat 
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Table 2: Linear Regression between MI X Starch In Different Genotypes Of Wheat 

Traits Genotypes a b X0 R2 

Starch N-80-19 330 -21 14 0.98 

N-86-12 256 -14.6 15 0.99 

N-87-12 2.48 -15.4 15.1 0.98 

N-87-8 232 -13.19 15.4 0.98 

Nai60 236 -13.7 15.5 0.99 

 a=Intercept b=Slope X0= In depended variable 

 

Relationship Regression between MI× Total Amylase in Different Genotypes 

Total amylase ranged from 66.5 to 3.44mg/g across genotypes Table 2. Regression analysis shown for all 

genotypes N-80-19, N-86-12, N-87-12 and Nai60 using the linear model were increased after 6, 14 and 21 

days (2.7821, 0.7136, 2.4314 and 1.2186 respectively). There was significant level between MI in terms 

of values of total amylase based on regression analysis. Total amylase values in the N-87-8 was increased 

with increased MI which it may be indicated increasing of sensitive this genotype than other genotypes 

(Table 4; Figure 2). 

 

 
Figure 2: Linear Regression between MI X Total Amylase in Different Genotypes of Wheat 

 

Table 3: Linear Regression between MI X Total Amylase in Different Genotypes of Wheat 

Traits Genotypes a b X0 R2 

Total amylase N-80-19 -11.76 2.78  0.88 

N-86-12 -0.61 0.71  0.96 

N-87-12 -5.40 2.43  0.91 

N-87-8 -20.94 4.34  0.95 

Nai60 -4.27 1.21  0.97 

a=Intercept b=Slope X0= in depended variable 

 

Relationship Regression between MI× Protein and In Different Genotypes 
Protein ranged from 100 to 38.94 mg gr across genotypes Table 2. The results of segmented model 

indicated that there is relationship between protein and days after MI for all genotypes and wheat 

genotypes were approximately similar in terms of parameters (table 4.21 & Figure 4.25). Therefore, 

estimated reducing slope for all genotypes N-80-19, N-86-12, N-87-12, N-87-8 and Nai60 using the 

segmented model were decreased linearly with day to -14.8079, -4.8529, -4.6257, -4.0764 and -4.3614 

respectively (Table 5; Figure 3). 
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Figure 3: Linear Regression between MI X Protein in Different Genotypes of Wheat 

 

Table 4: Linear Regression between MI X Protein in Different Genotypes of Wheat 

Traits Genotypes a b X0 R2 

Protein N-80-19 125.13 -4.80  0.95 

N-86-12 135 -4.85  0.95 

N-87-12 111.59 -4.62  0.93 

N-87-8 103.29 -4.07  0.93 

Nai60 127.03 -4.36  0.96 

a=Intercept b=Slope X0= In depended variable 

 

Relationship Regression between MI× Yield in Different Genotypes 

Yield ranged from 0.907 to 0.04 kg across genotypes Table 2. A segmented model was fitted for describe 

relationship between yield and days after MI for all genotypes. The results indicated that genotypesN-80-

19, N-87-12, N-87-8 were approximately similar in terms of parameters values but then the values of 

yield was constant to 21 days after MI.  

 

 
Figure 4: Linear Regression between MI X Yield in Different Genotypes of Wheat 
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The estimates for Nai60 using the segmented model were 13.92 days for turning point between the two 

phases (x0) and -0.0929 kg for reducing slope (b) (namely, at days above x0, yield values reduced linearly 

with day and before it values of yield was constant).  

For N-86-12, estimates were 11.359 days and -0.0314 kg for x0 and b and after that had procedure 

constant (0.5 kg). There were significant differences between genotypes in terms of values of yield based 

on regression analysis. Yield values in the N-86-12 were constant to 11.359 days after MI and with 

increased day which it may be indicated increasing of tolerance this genotype than other genotypes (Table 

6; Figure 4). 

 

Table 5: Linear Regression between MI X Yield in Different Genotypes of Wheat 

Traits Genotypes a b X0 R2 

Yield N-80-19 1.56 -0.09 15.54 0.99 

N-86-12 1.16 -0.03 11.35 0.98 

N-87-12 1.56 -0.10 14.99 0.99 

N-87-8 1.52 -0.09 15.15 0.98 

Nai60 2.1 -0.09 13.92 0.99 

a=Intercept b=Slope X0= In depended variable 

 

Simple Correlation (R) For the Selected Variables of Wheat Genotypes during PHS  

The results of correlation between parameters such as starch (r=0.58*) and protein (r=0.91**) were 

positively correlated with grain yield after MI. The other parameters such as total amylase (0.90**), ß-

amylase (0.88**), α-amylase (r=0.82**), percentage of PHS in spike (6.40**), severity of PHS in grain 

(0.97**) and duration of MI (r=0.82**) were negatively correlated with grain yield after MI (Table7). 

 

Table 6: Simple Correlation (R) For the Physiological Traits of Wheat Genotypes under MI 
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Starch 1         

Total amylases -.510* 1        

ß-amylase -.513* .975** 1       

α-amylase -.419* .922** .816** 1      

Protein .765** -.878** -.868** -.775** 1     

Percentage of 

 PHS in pike 
-.82** -.55** -.81* -.85** .77** 1 

   

Severity of 

 PHS in grains  
-.95** -.66** -.58** -.81** .80* -.97** 1   

Duration MI -.740** .701** .710** .566* -.888** .74** .70** 1  

Yield  .58* -.90** -.88** -.82** .91** -6.40** -.97** -.82** 1 

Path 8 Analysis for Direct and Indirect Effects on Selected Traits of Wheat Grains and Yield  

 

Path analysis correlation revealed that starch, protein and duration MI showed negative direct effect (-2.0, 

-13.88 and -7.052) on grain yield respectively. The negative indirect effect on grain yield was observed 

due to total amylases (-16.618), ß-amylase (-11.667) and α-amylase (-12.654) (Table 8).  
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Table 7: Path Analysis For Direct And Indirect Effects On Selected Traits Of Wheat Genotypes 

Variables  Path coefficient  

Total correlation 

(Yield) 
 Direct effect Indirect effect 

Starch -2.0 

 

2.595 

 

0.588 

 

Total amylases 15.7 

 

-16.618 

 

-0.908 

 

ß-amylase 10.58 

 

-11.662 

 

-0.885 

 

α-amylase 6.206 

 

-12.654 

 

-0.829 

 

Protein -13.88 

 

12.97 

 

0.917 

 

Duration of MI -7.052 

 

7.875 

 

-0.828  

 

 

Discussion  

Starch Hydrolysis During of PHS 

According to Dupont and Altenbach (2003) and Thitisaksakul et al., (2012) starch is a major determinant 

of yield, accounting for 65-75% of the grain dry weight and up to 80% of the endosperm dry weight. 

Reductions in starch accumulation during PHS account or significant losses in grain yield (Tashiro and 

Wardlaw, 1989; Jenner, 1991; Hurkman et al., 2003).  

The results on starch content in selected elite lines of spring wheat indicated significant alterations with 

duration of MI (Table 2, 3; Figure 1). The tolerant variety showed more accumulation of starch as 

compared to PHS sensitive cultivar.  

The grain starch is most important end product of cereals as they contain about 70% (w/w) starch 

(Thitisaksakul et al., 2012; WHO, 2003). Studies on changes in starch content may help to improve and 

avoid its degradation during PHS (Shaik et al., 2014).  

The increase/decrease in starch content during germination is controlled by activity of α-amylase. In 

present investigation the wheat cultivar tolerant to PHS (N-86-12) showed less α-amylase activity and 

more starch in it. While opposite trend was observed in PHS sensitive variety (N-87-8). Our results on 

starch contents are in accordance with above findings. 

Effects of PHS on Protein 

The results shown in Table 2, 5; Figure 3 revealed that protein contents were reduced during second and 

third step of MI in PHS sensitive wheat genotype (N-87-8) as compared to PHST genotype (N-86-12). 

Protein metabolism during seed germination is highly important, which is degraded by enzyme protease, 

releasing different amino acids, which are utilized by developing embryo (Bewly and Black, 1994). The 

breakdown of protein is very fast in wheat grains showing sprouting under MI in PHS sensitive genotype. 

But in PHS tolerant genotype due to dormancy inducing compounds like phenols there is no seed 

germination and no utilization of reserve food material like protein and hence the PHST genotype showed 

high protein content.  

The alterations in protein metabolism may act as biochemical marker for screening the PHST/ 

sensitiveness of wheat genotypes in breeding program. Analysis of protein accumulation/ degradation 

may serve as a reliable physiological indicator to screen the tolerance/ sensitiveness of wheat genotypes 

to PHS. Total protein contents are significantly affected by PHS, it appears that protein percentage is less 

sensitive to high temperatures (De Laethauwer et al., 2013). PHS had a significant effect on protein 

percentage (Zhang et al., 2014). Grain buyers use protein percentage as the surrogate measure for malting 

quality, due to the inverse relationship with starch content and positive correlation with diastatic power 

(Singh et al., 2014). 
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Many researches like Awole et al., (2012); Morris et al., (2013); Oszvald et al., (2014); Ade-Omowaye et 

al., (2008); Fu et al., (2014); Shewry et al., (2010-2012); Shiferaw et al., (2013) had indicated importance 

of protein in grain quality which changes according to environmental conditions like PHS and genotype  

Amylase Activity 

The α-amylase widely exists and participates in hydrolysis of starch. The expression of α-amylase was 

involved in plant metabolism and could affect the germination rate and production of seed (Autio et al., 

2001; Masojc and Milczarski, 2009). This may be due to activity of α-amylase that would increase 

quickly once absorbed enough water and then promoted the seed sprouting (Wang et al., 2008). The 

activity of α-amylase was also found to have a significant difference between the resistant and sensitive 

varieties to PHS in wheat (Wu et al., 2002; Lin et al., 2008).  

The results shown in Table 2, 4; Fig. 2 clearly indicated that during third step of MI (21 days) the PHS 

susceptible genotypes had shown very high activities of α, ß and total amylase as compared to the PHST 

genotypes. The results of present investigation are in agreement with many researches like Singh et al., 

(2010); Xing et al., (2010); Jaiswal et al., (2012); Clarke et al., (2005); Singh et al., (2014)and Ghanbari 

and Mir (2013). They pursued monitoring of α-amylase activity, an enzyme that is involved in PHS, both 

at transcriptional and post-transcriptional levels during kernel development. They further explained that 

damage caused by PHS has often been associated with increased levels of α-amylase activity in the 

kernel. By converting starch into soluble sugars, high α-amylase activity levels negatively affect the 

nutritional and end-use quality of grain (Mares and Mrva, 2008). Yan et al., (2008) reported that the flour 

of sprouted grain has a lower falling number, because the active α-amylases degrade the starch, resulting 

in poor baking quality and severe limitations in end-use application Wheat. 

Several tests assessing this damage due to PHS are based on α-amylase activity levels at harvest ripeness 

(Lin et al., 2008). Although PHS is often the primary source of increased α-amylase activity, several other 

sources of α-amylase may obscure this weak relationship (Lunn et al., 2001). The different levels of α-

amylase activity have been detected in cereals like wheat, rye and triticale, they all show a typical pattern 

during kernel development (Laethauwer et al., 2013; Gao et al., 2013; Rentzsch et al., 2012; Biddulph et 

al., 2008). According to Wu et al., (2002) and Gao et al., (2013) the relationship between α-amylase 

activity and PHS resistance was deemed to be very remarkable (Wang et al., 2008).  

Singh et al., (2014) stated that sprouting in wheat produces the enzyme α- amylase which leads to losses 

in yield and quality. DePauw et al., (2012) detected a significant positive correlation between values for 

germination of threshed kernels and levels of α-amylase. Singh et al., (2010) showed that PHS is initially 

recognized by an elevated level of starch hydrolytic enzyme activities that primarily originate from α-

amylases. These enzymes catalyze breakdown of endosperm starch and thus provide the initial energy 

needed for seed germination (Xing et al., 2010)  

According to Jaiswal et al., (2012) α-amylase is involved in germination and PHS tolerance. Ghanbari 

and Mir (2013) revealed that PHS negatively affect subsequent grain quality, seed viability, seedling 

vigor and milling and backing properties, reduction in grain quality is caused by conversion of starch to 

glucose (sugar) by the enzyme α-amylase. The enzyme α-amylase is synthesized in the aleurone layer and 

scutellum and released in the endosperm to decompose the starch into sugars available for germination 

(Lunn et al., 2001). Several factors contribute to increased PHS tolerance, such as reduced level of α-

amylase activity in grains, the presence of inhibitors of germination, reduced water absorption by the 

grains (Mares et al., 2009; Jacobsen et al., 2013; Kaplan and Guy, 2004). The results of present study on 

α-amylase activity in the selected wheat genotypes corroborate with above findings and confirm that the 

activity of α-amylase play a crucial role in selection of PHST genotypes of in cereals like wheat, barley 

and rye.  

Effect of PHS on Grain Yield and End Use Quality 
PHS in wheat greatly affects the grain yield in different parts of the world resulting in to substantial 

financial losses to farmers and food processors. It also decreases the grain value to the producers by 

impacting four different primary grade determinants grain quality and end use quality (Gao et al., 2013; 

Masojc et al., 2013; Jaiswal et al., 2012; Himi et al., 2012; DeLaethauwer et al., 2013; DeLaethauwer et 
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al., 2012; Zhang et al., 2014). Many researchers reported significant economic losses due to a reduction 

in grain yield during PHS in different crops including wheat and other cereals (Liu et al., 2008; Singh et 

al., 2014; Yang et al., 2014; Kulwal et al., 2012; DePauw et al., 2012). 

The results of present study are in close agreement with above findings. Grain yield was very low in PHS 

sensitive wheat genotypes of spring wheat as compared to tolerant genotypes. This may be due to 

degradation of starch by the elevated levels of amylase activity and high percentage of PHS and severity. 

Starch accounts for 64-74% of the total dry weight of wheat grains and hence if it is degraded it results 

into loss in grain weigh and yield (McCaig et al., 2006; Kulwal et al., 2012). The properties of starch are 

important for determining the end-use quality of wheat flour and its degradation lead to loss in end use 

quality of wheat. Degradation of native starch granules negatively affect quality of various products made 

from wheat flour. The primary reason for α- amylase accumulation in the grain is delayed harvest due to 

wet weather, causing breakdown of grain quality (DeLaethauwer et al., 2012; Kondhare et al., 2014). The 

source of elevated α-amylase activity is associated with pre-maturity sprouting and involves germination 

during early grain development when kernels are still at high moisture content (Lunn et al., 2001; 

Shockravi et al., 2012; Knox et al., 2012). Rainfall at harvest, however, is the main cause of PHS 

inducing α-amylase activity (Wrigley, 2006). Even minor sprout damage can cause significant reductions 

in gluten strength of wheat flour making it unsuitable for bread making (Barbeau et al., 2006; Knox et al., 

2012). The losses in grain yield, end use quality as well as grain quality during PHS in wheat grains 

depend on genotype, environmental conditions during grain development and interaction between these 

factors (De Laethauwer et al., 2009), hence, cereal breeders constantly seek to improve tolerance to PHS 

in cereals (De Laethauwer et al., 2012). In present investigation we have studied some few physiological, 

biochemical, and enzymological traits in spring wheat showing PHS in northern part of Iran. These 

markers may help the breeders in breeding program for selecting PHS tolerant varieties (Table 2, 6, 7, 8; 

Figure 4). 

Conclusion 
From the results of present study it can be concluded that the Iranian wheat varieties, which are late 

maturing are mostly sensitive to PHS, as rainfall occurs during harvesting period. The physiological 

attributes of grains such as starch and protein as well as activity of α, ß and total amylase may serve as the 

reliable physiological and enzymological indicators to identify the PHS tolerant or sensitive genotypes, 

under MI simulating the conditions of natural rainfall. The α, ß and total amylase activity play 

predominant role in PHS, which determines the loss in grain yield and end use quality. 
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