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ABSTRACT 

It is shown that a third order voltage transfer function requires two conditions to be satisfied, while a second 

order function of a passive RC circuit cannot yield an all-pass or a BRF function. However, they can be 

realized with the values less than 1 at null frequency. These circuits are converted into standard active filters 

using an Op Amp (OA). In place of OA, one can use some other devices, such as CFA, FTFN, CCII. Finally, 

a current mode circuit is derived.  
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I. INTRODUCTION 

Recently, Dutta Roy et al., (2024) have considered a third order RC bridged-ladder network as a band reject 

filter. Then they derived a band pass filter through complementary transformation. We bring out a 

disadvantage of a 3rd order filter in Section 2 followed by a systematic derivation of active filter structures 

from their passive counterparts. A current mode circuit is derived from a voltage mode circuit in Section 3. 

Section 4 gives the conclusion. Although the circuits derived here were proposed independently by various 

researchers in the past, it is shown that they are closely related.  

 

II. ANALYSIS  

 

2.1 THIRD ORDER CIRCUIT  

The voltage transfer function of a 3rd order filter that has the value 1 both at zero and infinite frequencies 

can be expressed as  

𝑇(𝑠) =
𝑠3 + 𝑎𝑠2 + 𝑏𝑠 + 𝑐

𝑠3 + 𝑑𝑠2 + 𝑒𝑠 + 𝑐
 (1) 

Replacing s by j𝜔, we get 

𝑇(𝑗𝜔) =
(𝑐 − 𝑎𝜔2) + 𝑗𝜔(𝑏 − 𝜔2)

(𝑐 − 𝑑𝜔2) − 𝑗𝜔(𝑒 − 𝜔2)
. (2) 

Null is obtained when both the real and imaginary parts reduce to 0, i.e., when  

   (𝑏 − 𝜔2) = 0, (3) 

and  

𝑐 − 𝑎𝜔2 = 0.    (4) 

We note that two conditions given by (3) and (4) need to be satisfied simultaneously. 

 

2.2  SECOND ORDER CIRCUITS  

Three standard filters BPF, BRF and APF have, respectively, voltage transfer functions 

𝑇𝐵𝑃𝐹(𝑠) =
𝑎𝑠

𝑠2 + 𝑎𝑠 + 𝑏
,   (5)  
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𝑇𝐵𝑅𝐹(𝑠) =
𝑠2 + 𝑏

𝑠2 + 𝑎𝑠 + 𝑏
,   (6)  

  

 
(a)  BRF (1,1,0) (b) BPF (0,0,1) (c) APF (1,1,-1) 

Figure 1: Polar plots of standard filters 

 

𝑇𝐴𝑃𝐹(𝑠) =
𝑠2 − 𝑎𝑠 + 𝑏

𝑠2 + 𝑎𝑠 + 𝑏
. (7)  

The frequency responses (polar plots) of these filters are shown in Fig. 1. We will use the notation (a,b,c) 

to represent the real values a, b, c at 3 frequencies: 0, ∞, 𝜔𝑜 = √𝑏. Thus, (0,0,1) for BPF, (1,1,0) for BRF 

and (1,1,-1) for APF. From Figure 1 and eqns. (1)-(3), we see that BPF = 1- BRF. Therefore, BPF and BRF 

are complementary functions (Rathore et al.,1980). Hence, one can be obtained from the other by 

interchanging the input and ground terminals. Also, APF = -2BRF + 1 = -(1-2BRF). It is the complement 

of 2BRF with a negative sign. Thus, the three filters are interrelated. If we know one of them, the other two 

can be derived. The approach we have adopted is to start from a second order passive BRF and then convert 

it into standard BRF using one OA, and then the other two filters.  

The second order voltage transfer function of a passive RC circuit can be expressed as  

𝑇𝑜(𝑠) =
𝑠2 + 𝑐𝑠 + 𝑏

𝑠2 + 𝑎𝑠 + 𝑏
, 0 < 𝑐 < 𝑎. (8)  

In view of the inequalities in Eqn. (4), it cannot reduce to an APF or BRF. However, it can be converted 

into standard form of the filter using an active device as shown below. From Eqn. (4), 

𝑇𝑜(𝑗𝜔) =
(𝑏 − 𝜔2) + 𝑗𝑐𝜔

(𝑏 − 𝜔2) + 𝑗𝑐𝜔
. (9)  

At the centre frequency  

𝜔𝑜
2 = 𝑏, (10)  

𝑇𝑜(𝑗𝜔𝑜) =
𝑐

𝑎
= real value =  𝑥 (say) < 1. 

(11)  

It is a BRF with a minimum value of 𝑥 < 1 at 𝜔𝑜. Thus, it is not a standard BRF filter (which has 0 at the 

null frequency). To convert it into a standard one, we multiply the function by (1+m) and subtract m, so that 

the values at 0 and ∞ frequencies remain the same 1. However, from Eqn. (7), 

𝑇𝑜(𝑗𝜔𝑜) = 𝑥(1 + 𝑚) − 𝑚. (12)  

The condition for standard BRF is  

𝑥(1 + 𝑚) − 𝑚 = 0      →  𝑚 =
1

(
1
𝑥) − 1

. (13)  

Similarly, the condition for a standard APF is  

𝑥(1 + 𝑚) − 𝑚 = −1     →  𝑚 =
1 + 𝑥

1 − 𝑥
. (14)  
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Figure 2: Circuits for BRF (m = m1), for APF (m = m2) 

 
(a)                                  (b)                                          (c) 

Figure 3: Simple RC circuits for 𝑻𝒐(𝒔). 

 

The implementation of these filters using OA is shown in Fig. 2. Here (-m block) is receiving two inputs, 

To(s)Vi and Vi. The voltage transfer function can easily be obtained by superposition, and using the standard 

formulae for non-inverting and inverting amplifier.  

 

Note that the values at frequencies 0 and ∞ are still 1. When  

m= 
𝑐

𝑎−𝑐
= 𝑚1, (15)  

it becomes a BRF and when  

𝑚 =
𝑎+𝑐

𝑎−𝑐
= 1 + 2𝑚1= 𝑚2 (16)  

it becomes an APF.  

Example: Three simple passive RC circuits shown in Fig. 2 (Rathore et al. 1975a), (Rathore 1975), (Rathore 

et al. 1975b), (Rathore 1976) have the transfer function given by eqn. (4), where 

𝑎 =
(𝐶1𝑅1 + 𝐶2𝑅2 + 𝐶1𝑅2)

𝐶1𝑅1𝐶2𝑅2

, 𝑏 =
1

𝐶1𝑅1𝐶2𝑅2

, 𝑐 =
(𝐶1𝑅1 + 𝐶2𝑅2)

𝐶1𝑅1𝐶2𝑅2

. 

For convenience, we choose R1 = R2 = 1 and C1 = C2 = 1. Then   

𝑇𝑜(𝑠) =
𝑠2 + 2𝑠 + 1

𝑠2 + 3𝑠 + 1
. (17)  

Therefore, 

𝑐 = 2, 𝑎 = 3,    𝑥 = 2/3.  (18)  

We choose as per Eqns. (12) and (13) m1 = 2 and m2 = 5 to realize the following standard BRF and APF, 

respectively 

𝑇(𝑠) =
𝑠2 + 1

𝑠2 + 3𝑠 + 1
, (19)  

𝑇(𝑠) =
𝑠2 − 3𝑠 + 1

𝑠2 + 3𝑠 + 1
. (20)  

If we interchange the input and ground terminals of To-block, the transfer function becomes (Rathore, 1976), 

(Rathore et al., 1980) 
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Figure 4: Implementation of BPF (m = 2 or 5).           Fig. 5:  Implementation of BPF (m = 2 or 5). 

 

𝑇𝑜𝐶(𝑠) = 1 − 𝑇𝑜(𝑠) =
(𝑎 − 𝑐)𝑠

𝑠2 + 𝑎𝑠 + 𝑏
.   (21)  

𝑇𝑜𝐶(𝑠) is 0 at both 0 and ∞ frequencies. This is a BPF with the peak value (1 − 𝑥) < 1 at 𝜔𝑜 = 1. It can be 

converted into a standard BPF (which has the value 1 at the centre frequency) by multiplying with (1+m). 

Because of the 0 value at 0 and ∞ frequencies, we need not subtract anything, such as m above.  
 

The condition for BPF is  

(1 − 𝑥)(1 + 𝑚) = 1    → 𝑚 =
1

(1/𝑥)−1
= 2. (22)  

The complete circuit of the BPF is shown in Figure 4. 

If the input and ground terminals of the circuit shown in Figure 2 are interchanged, we get two 

complementary functions (Rathore et al., 1980), (Rathore et al., 1980), as BPFs  

𝑇𝐶(𝑠) = 1 − 𝑇(𝑠) =
(3 or 6)𝑠

𝑠2 + 3𝑠 + 1
. (23)  

All the passive circuits (including those presented in Dutta Roy et al., (2024) cannot be cascaded 

unless a buffer is employed, except when the load has an infinite input impedance (Rathore, 1980), 

Rathore et al., 2010), (Rathore et al., 2005). Then they become active circuits. We have given a 

flexible active configuration of Figure 2 which can realize BRF, BPF and APF by changing a 

single resistance and a few connections, and is cascadable.  
 

2.3 FIRST ORDER CIRCUITS 

Consider the first order high pass voltage transfer function  

𝑇𝑜(𝑠) =
𝑠

𝑠 + 1
. (24)  

Here we have 0 at zero frequency and 1 at ∞ frequency. To get an APF, we need to adjust the value at 0 

frequency to -1. Multiply by (1+m) and subtract m so that 

𝑇(𝑠) = (
𝑠

𝑠 + 1
) (1 + 𝑚) − 𝑚 =  (

𝑠 − 𝑚

𝑠 + 1
). (25)  

Thus, choosing m = 1, we get  

𝑇(𝑠) = (
𝑠 − 1

𝑠 + 1
). (26)  

Consider the first order passive RC high pass circuit shown in Figure 5.  

If we interchange input and ground of high pass filter of Figure 6,  

𝑇𝑜𝐶(𝑠) = 1 − 𝑇𝑜(𝑠) =
1

𝑠 + 1
. (27)  

It has 0 at ∞ and 1 at 0 frequency. We have to bring the value at ∞ to 1. Again, multiplying by (1+m) and 

subtracting m, we get  

𝑇(𝑠) = (
1

𝑠 + 1
) (1 + 𝑚) − 𝑚 = −

𝑠𝑚 − 1

𝑠 + 1
. (28)  
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Figure 6: First order high pass filter 

 

 
(a)                                               (b) 

Figure 7: First order APF with (a) positive gain (b) negative gain. 

 

Choosing m = 1 will make it an APF shown in Figure 6(b).  
If we interchange input and ground of high pass filter of Figure 6,  

 

𝑇𝑜𝐶(𝑠) = 1 − 𝑇𝑜(𝑠) =
1

𝑠 + 1
 (29)  

This is a low pass function.  

 

If the input and ground terminals of the circuit shown in Figure 2 are interchanged, we get two complementary 

functions (Rathore, 1980), (Rathore et al. 1980a), as BPFs.  

 

III. CIRCUITS WITH OTHER DEVICES 

The OA in Figure 2 is replaced by other active devices as shown in Figure 8. In Figure 8(a), FTFN satisfy 

eqns. (27) and (28). Therefore, OA can directly be replaced by FTFN. Output is taken at z terminal which 

follows the voltage of w terminal, but offers zero output impedance. In Figure 8(b), CCII satisfies Equation 

(27), but does not Equation (28). The current at x terminal is not 0 but equal to Iz, the current through the 

feedback resistance is halved. Hence, to give the same output voltage, the feedback resistance is doubled. 

In Figure 8(c), CFA satisfies eqn. (27) and Iy = 0, but Ix ≠ 0. To force Ix = 0, Iz is made 0 by keeping the z 

terminal open. Circuits of Figures 8(a) and (b) have appeared in Rathore et al. (2008), Rathore et al. 

(1975b), Rathore et al. (2005c). 

   

IV. CURRENT MODE CIRCUIT 

In sections II, we have used the following terminal characteristics of the OA given in Table 1. 

𝑉𝑥 =  𝑉𝑦 (30)  

𝐼𝑥 =  𝐼𝑦 = 0. (31)  

The voltage transfer function of the circuit shown in Figure 2 can be expressed as 

𝑇(𝑠) = 𝑇𝑆(𝑠)(1 + 𝑚) − 𝑚     → (−𝑚){1 − 𝑇(𝑠)} + 𝑇(𝑠). (32)  

From this relation, we see that (-m) and 𝑇(𝑠) blocks can be interchanged. Thus, we get an alternative circuit 

shown in Figure 8. This voltage mode circuit has a virtual ground. Therefore, it can be converted into a 

current mode circuit by (i) interchanging the output and the inverting terminals of the OA, (ii) connecting 

a current source current mode circuit.  

The voltage transfer function of the circuit shown in Figure 2 can be expressed as 

𝑇(𝑠) = 𝑇𝑆(𝑠)(1 + 𝑚) − 𝑚     → (−𝑚){1 − 𝑇(𝑠)} + 𝑇(𝑠). 
 

(33)  
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Figure 8: Circuit after interchanging -m and TS(s) blocks Figure 9: Current mode circuit 
 

 

Table 1: Various devices, their symbols and characteristics 

Device Symbol Terminal 

characteristics 

OA 

 

𝑽𝒙 = 𝑽𝒚, 

𝑰𝒙 = 𝑰𝒚 = 𝟎 

FTFN 

 

𝑽𝒙 = 𝑽𝒚,  

𝑰𝒙 = 𝑰𝒚 = 𝟎,  

𝑰𝒛 = ±𝑰𝒘. 

CCII 

 

𝑽𝒙 = 𝑽𝒚,  

𝑰𝒚 = 𝟎,    

𝑰𝒛 = 𝑰𝒙. 

CFA 

 

𝑽𝒙 = 𝑽𝒚, 

𝑰𝒙 = 𝑰𝒛, 
𝑰𝒚 = 𝟎,  

𝑽𝒛 = 𝑽𝒘 

 

From this relation, we see that (-m) and 𝑇(𝑠) blocks can be interchanged. Thus, we get an alternative circuit 

shown in Figure 8. This voltage mode circuit has a virtual ground. Therefore, it can be converted into a 

current mode circuit (Rathore et al., 2007) by (i) interchanging the output and the inverting terminals of the 

OA, (ii) connecting a current source Ii where a voltage output was taken, and Io will be the output current 

where the input voltage source was connected in the voltage mode circuit. This current mode circuit so 

obtained is shown in Figure 9. It can be verified that its current transfer function is the same as that of the 

voltage mode circuit of Figure 8.  
 

V. CONCLUSION 

It is shown that a third order voltage transfer function requires two conditions to be satisfied to act as a 

BRF. A general second order filter circuit is derived from the corresponding passive circuit which can 

realize BPF, BRF APF just by changing a resistor and some connections. These circuits require smaller 

numbers of passive elements, and are cascadable. A current mode circuit is derived from a circuit in which 

the device has a one input terminal grounded by voltage mode to current mode transformation.  
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