
International Journal of Applied Engineering and Technology ISSN: 2277-212X

An Open Access, Online International Journal Available at http://www.cibtech.org/jet.htm

2022, Vol.12, pp.128-138/Vijay et al.

Research Article

Centre for Info Bio Technology (CIBTech) 128

SOFTWARE QUALITY IMPROVEMENT FOR REGULAR

EXPRESSION MATCHING TOOLS USING AUTOMATED

TESTING

*M. Vijay ananth kumar

1
, Manikandan

2
 and C. Senthil kumar

3

Department of MCA Roever Engineering College

*Author for Correspondence: vijayananthmca@gmail.com

ABSTRACT

Regular expression matching tools (grep) match regular expressions to lines of text. However, because of

the complexity that regular expressions can reach, it is challenging to apply state of the art automated

testing frameworks to grep tools. Combinatorial testing has shown to be an effective testing methodology,

especially for systems with large input spaces. In this dissertation, we investigate the approach of a fully

automated combinatorial testing system for regular expression matching tools CoRE (Combinatorial

testing for Regular Expressions). CoRE automatically generates test cases using combinatorial testing and

measures correctness using differential testing. CoRE outperformed AFL and AFLFast in terms of code

coverage testing icGrep, GNU grep and PCRE grep.

Keywords: Regular Expression, Grep, Automated testing, Combinatorial testing, Regular Expression

Generator; String Generator, Differential testing

INTRODUCTION

Ever since regular expressions were first used to match text in 1968 by Ken Thompson [1], regular

expressions have experienced a remarkable rise in popularity [2, 3]. A regular expression is a specific

kind of text pattern that you can use with many modern applications and programming languages such as

verifying input patterns, finding text that matches the pattern within a larger body of text, replacing text

matching the pattern with other text and many other applications.

Today, almost all popular programming languages like Java, C and Python include a powerful regular

expression library, or even have regular expression support built right into the language [4]. Many

developers have taken advantage of these regular expression features to provide users of their applications

the ability to search or filter through their data using a regular expression. The adaptation of regular

expressions in different tools and the differences in supported features between these tools resulted in

different regular expression syntaxes (sometimes called flavors). Thus, creating additional challenges to

the attempt of testing regular expression matching tools [5].

In this dissertation, we reveal an approach to an automated testing framework for regular expression

matching tools (grep) using automated combinatorial testing and differential testing. Over the past few

years, combinatorial testing has shown to be an effective testing strategy [6] [7] [8]. Combinatorial

testing is considered a black box testing technique. It requires no knowledge of the system’s

implementation relying on the knowledge of input space model. Some system problems only occur when

a combination of input parameters interact. For 2-way or pairwise testing, every pair of input parameters

must be tested at least once in the test suite. The same concept applies to k-way testing. There are

algorithms and tools like Automated Combinatorial Testing for Software ACTS [6] to help generate all

different combinations of parameters to satisfy k-way testing. It takes the input parameters for the system

under test and, using covering arrays, produces abstract combinatorial tests. These abstract test cases then

need to be transformed into concrete test cases ready to run on the system under test. But for systems with

a large input space, it would take a lot of time and effort to write concrete combinatorial test suites and

thus may only be feasible when applied to small systems or critical parts of bigger systems [8].

mailto:vijayananthmca@gmail.com

International Journal of Applied Engineering and Technology ISSN: 2277-212X

An Open Access, Online International Journal Available at http://www.cibtech.org/jet.htm

2022, Vol.12, pp.128-138/Vijay et al.

Research Article

Centre for Info Bio Technology (CIBTech) 129

While ACTS generates raw combinatorial test cases, our contribution relies on transforming these

combinations into ready-to-run test cases.

In order to evaluate our approach, we implemented a tool CoRE (Combinatorial testing for Regular

Expressions) that tests regular expression matching tools like GNU grep and icGrep. GNU grep is a grep

tool implemented by GNU organization that supports GNU basic regular expression syntax BRE as well

as GNU extended regular expression syntax ERE. On the other hand, icGrep is a powerful regular

expression matching tool with support of GNU BRE and ERE syntaxes along with Unicode RE syntax.

Grep tools normally take three inputs. A regular expression, an input file and command line options such

as Case insensitive mode or count mode. A regular expression is a sequence of characters that define a

search pattern.

To reach full automation of combinatorial testing for regular expression matching tools, we applied two

main techniques:

 Automated transformation of ACTS abstract combinatorial test cases into concrete grep

test cases.

 Automation of result evaluation and error detection using differential testing.

There have been some efforts to use combinatorial testing to test grep tools [9]. Borazjany showed that

applying such technique on a system like grep can improve fault detection and software quality.

Borazjany manually transformed ACTS output to test cases hand writing regular expressions as well as

input files.

In terms of Automated Testing, there are fuzzing tools like American Fuzzy Lop (AFL) [10] and others

[11] [12] which rely on generating extensive tests and looking for crashes. AFL takes an initial test suite

and mutates input using sequential bit manipulation to explore new execution paths. AFLFast is an

extension of AFL with a different technique to mutate initial test suite using Markov chains [11].

The goal of this dissertation is to evaluate our proposed methodology against existing approaches and

observe the impact of our approach on the quality of the regular expression matching tool under test. To

do so, we compare the code coverage CoRE reaches testing grep tools to the requirement based manually

written test suites. We evaluate CoRE testing icGrep, GNU grep and PCRE grep. icGrep is a powerful

regular expression matching tool based on Parabix, a parallel computing framework, supporting different

regular expression syntaxes [12]. We are interested in testing icGrep because it relies on LLVM JIT

compilation [13] which makes static analysis techniques used by fuzz testing tools challenging. We also

evaluate CoRE against two fuzzing tools, AFL and AFLFast comparing statement and function coverage.

Additionally, we evaluated CoRE testing GNU grep performing differential testing with FreeBSD grep.

Both GNU grep and FreeBSD grep follow the same syntax and should be returning identical results. We

also evaluated CoRE testing PCRE Grep.

In next Chapter , we discuss the history regular expressions, the growth of interest in regular expressions

and how they evolved to different flavors over different applications. After that, we discuss previous

efforts in the combinatorial testing and the automated testing fields as well as some previous work on

applying combinatorial testing on systems like grep. Chapter 3 discusses the design and methodology of

CoRE starting from the input space modeling to regular expression generation and input file generation

ending with composing the test suite and comparing results with different grep tools. In Chapter 4, we

evaluate the effectiveness of automating combinatorial testing for regular expression matching tools and

observe its effect on system quality. Chapter 5 concludes this dissertation with a summary of the

contribution of our work. It also discusses possible future work to further expand the benefits of such an

approach.

Background and Overview

Regular Expression Matching

A regular expression is a pattern that consists of one or more character literals and operators. Regular

International Journal of Applied Engineering and Technology ISSN: 2277-212X

An Open Access, Online International Journal Available at http://www.cibtech.org/jet.htm

2022, Vol.12, pp.128-138/Vijay et al.

Research Article

Centre for Info Bio Technology (CIBTech) 130

expression matching tools like icGrep search plain-text data sets for lines that match a regular expression.

Ken Thompson used regular expressions to match patterns in a text editor in 1968 [1]. In the 1980’s, the

Perl programming language incorporated regular expressions as first-class elements of the programming

language. Perl provided several innovative extensions of regular expressions that became common. Since

then, many regular expression matching tools have emerged and started adding new features to regular

expressions like POSIX Character classes and Unicode support. Perl Compatible Regular Expressions

(PCRE) is a regular expression C library, originated in 1997, inspired by the regular expression

capabilities in the Perl programming language [13]. PCRE expanded regular expressions’ capabilities and

features.

In 2014, Robert Cameron et al. introduced the regular expression matcher icGrep [3]. icGrep uses bitwise

data parallelism to achieve high performance regular expression matching. The way icGrep is

implemented makes it more challenging to test. icGrep relies on LLVM, “a collection of modular and

reusable compiler and toolchain technologies” [14], to generate the match function at runtime (JIT). This

means that automated testing tools that rely on static code instrumentation such as AFL may not perform

as well on icGrep as it would on other grep tools that do not rely on JIT code generation.

Automated Software Testing

Software testing automation can reduce costs dramatically by saving testers time and energy and directing

their efforts on other areas. There are several white box automated testing techniques that have shown

success in fault detection.

One successful automated testing technique is fuzzing [11] [19]. Fuzz testing involves providing

randomly generated inputs in an attempt to make the software under test SUT fail [12]. This kind of

testing is achieved by using a variety of strategies and algorithms to mutate the test suite of the SUT [11].

American Fuzzy Lop (AFL) is a tool which uses code analysis to mutate inputs to explore new paths in

the control flow of the software under test.

AFLFast is an extension of AFL and is also considered gray box testing, mid- level between white box

and black box testing. AFLFast requires no program analysis. Instead of analyzing code as in AFL,

AFLFast produces new tests by mutating a seed input and tracking if the test visits interesting paths in the

program. If so, the test is added to the set of seeds and otherwise discarded. AFLFast claims to be more

efficient than AFL.

The problem with using fuzzers to test grep tools is that regular expressions are syntactically constrained.

Open and closed parenthesis and brackets have to match while other Meta characters require a value

from a pre-defined set. These constrains make fuzzers hit a syntax error more often than not. Although

testing these incidents are important to know if the grep tool under test manages syntax errors

correctly, most bugs are found in tests with proper formed regular expressions. Another downside to

fuzzers is their inability to perform useful differential testing to find correctness bugs for grep tools

because of the need for input files containing matches to the generated regular expression.

Design and Methodology

Throughout this section, we use icGrep as an example to illustrate the design and methodology to test a

grep tool using CoRE. All of what is explained here applies to most if not all grep tools similarly.

Input Space Modeling

Prior to performing combinatorial testing to the software under test, we must model the system’s input

space in a way that captures all input parameters for grep tools. A regular expression is a sequence of

characters that form a pattern. These characters can either match themselves, i.e. ‘abc’ and ‘123’, or can

have a special property like ‘+’ or ‘\s’ and are called metacharacters. We decided to categorize

combinatorial parameters based on metacharacters. Doing so gives us the ability to test metacharacters

with different combinatorial settings. Metacharacters only appear in the test if their value was not set to

‘off’ in the combinatorial test. Table 3.1 Show the combinatorial parameters of a combinatorial testing

tool (ACTS) for regular expressions.

For Boolean parameters, the feature exists in the regular expression used for the test only if the value is

International Journal of Applied Engineering and Technology ISSN: 2277-212X

An Open Access, Online International Journal Available at http://www.cibtech.org/jet.htm

2022, Vol.12, pp.128-138/Vijay et al.

Research Article

Centre for Info Bio Technology (CIBTech) 131

“True”. There are some parameters that have enumerated values for the parameters. For example, the

values for the Property parameter are categorized based on the property type [31]. Enumeration properties

have enumerated values which constitute a logical partition space. Binary properties are a special case of

Enumeration properties, which have exactly two values: Yes and No (or True and False) while Numeric

properties specify the actual numeric values for digits and other characters associated with numbers in

some way. Finally, String typed Properties take a character class or a regular expression as a value of the

property itself. Expanding our combinatorial parameter to capture all these types of parameters increases

the coverage of Unicode properties. Our proposed methodology makes adding new features and

metacharacters easy. Doing so requires adding the appropriate parameters in the combinatorial testing tool

as well as some code to transform the parameter into the appropriate metacharacter.

Table 1: Regular Expression parameters for icGrep

Parameter Value Type Description

Any Boolean ‘.’ matches any single character.

Zero or One Boolean ‘?’ makes the preceding pattern optional.

Zero or More Boolean ‘*’ makes the preceding pattern matched zero or

more

times.

One or More Boolean ‘+’ makes the preceding pattern matched one or

more

times.

Repetition {n} Unum = {small,

medium, large}

‘{n}’ makes the preceding pattern matched n times.

Repetition {n,m}

Enum = {small-

small, small-medium,

 small-

large, medium-large,

large}

‘{n,m}’ makes the preceding pattern matched

between n and m times.

Repetition {n,} Enum = {small, medium,

large}

‘{n,}’ matches the preceding pattern n or more times

Repetition {,m} Enum = {small, medium,

large}

‘{n,}’ matches the preceding patter at most m times

Alternation Boolean ‘|’ matches either the preceding pattern or the

following pattern

List Boolean ‘[xyz]’ matches either x or y or z.

Not List Boolean ‘[^xyz]’ matches any character except x, y and z.

Range Boolean ‘[1-9]’ matches a character from 1 until 9.

Posix Bracket

Expression

Enum = {off,

 alnum, alpha,

blank, digit, graph,

lower, upper, print,

punct, xdigit}

Special kind of character classes. For example,

‘[:alpha:]’ matches any alphabet character.

Word Character Boolean ‘\w’ matches word constituent

International Journal of Applied Engineering and Technology ISSN: 2277-212X

An Open Access, Online International Journal Available at http://www.cibtech.org/jet.htm

2022, Vol.12, pp.128-138/Vijay et al.

Research Article

Centre for Info Bio Technology (CIBTech) 132

Not Word Character Boolean ‘\W’ matches non-word constituent

Whitespace Boolean ‘\s’ matches the whitespace character.

Not whitespace Boolean ‘\S’ matches any non-whitespace characters.

Tab Boolean ‘\t’ matches the horizontal tab character.

Digit Boolean ‘\d’ matches a digit character.

Not Digit Boolean ‘\D’ matches a non-digit character.

Property

Enum = {off,

 binary, enum,

string, numeric}

‘\p{property}’ matches any character with the

specified Unicode property.

Not Property

Enum = {off,

 binary, enum,

catalog, numeric}

‘\P{property}’ matches any character not having the

specified Unicode property.

Name Property Boolean ‘\N{Name}’ matches the named character.

Unicode Codepoint Boolean ‘\uFFFF’ where FFFF are four hexadecimal digits,

matches a specific Unicode codepoint.

Lookahead

Boolean

‘(?=pattern)’ Matches at a position where the pattern

inside the lookahead can be matched. Matches only the

position. It

does not consume any characters or expand the match.

Negative Lookahead

Boolean

‘(?!pattern)’ Similar to positive lookahead, except that

negative lookahead only succeeds if the regex

inside

thelookahead fails to match.

Lookbehind Boolean ‘(?<=pattern

)

Matches at a position if the pattern inside

the

lookbehind can be matched ending at that position.

Negative Lookbehind Boolean ‘(?<!pattern)’ Matches at a position if the pattern

inside the

lookbehind cannot be matched ending at that position.

Start Boolean ‘^’ matches the empty string at the beginning of a line.

End Boolean ‘$’ matches the empty string at the end of a line.

Back Referencing Boolean ‘\n’ where 1 n 9, match the same text as

previously matched by the n
th
 capturing group.

Table 2: Regular Expression parameters for icGrep

Parameter

Type

Parameter Value Type Description

Regular

Expression

Interpretati

on

Case Insensitive Boolean ‘-i’ Ignores case distinctions in the pattern.

Regular Expression

Syntax

Enum = {off, -G, -E, -P}

‘-G’, ‘-E’ and ‘-P’ specify the regular

expression syntax used.

Word Regular

Expression

Boolean ‘-w’ requires that whole words be

matches.

Line Regular

Expression

Boolean ‘-x’ requires that entire lines be matched.

International Journal of Applied Engineering and Technology ISSN: 2277-212X

An Open Access, Online International Journal Available at http://www.cibtech.org/jet.htm

2022, Vol.12, pp.128-138/Vijay et al.

Research Article

Centre for Info Bio Technology (CIBTech) 133

Input

Options

Multiple Regular

Expressions

Boolean

‘-e pattern’ is used to match multiple

regular expression or with ‘-f’.

Regular Expression

File

Boolean

‘-f File’ is used to read regular expression

from File line by line.

Output

Options

Count Boolean ‘-c’ displays only the number of matches.

Inverted Match Boolean ‘-v’ selects non-matching lines.

icGrep

Specific Flags

Threads

Enum ={off,1,2,3,4}

‘-t=n’ where n is a digit, specifies the

number of threads used.

Block Size

Enum = {off,

64,128,265,512}

‘-BlockSize=n’ where n is a digit,

specifies the processing block size.

Table 2 shows the parameters for the combinatorial testing for the command line flags. The flags can

affect the matched regular expression, like case insensitive match and regular expression syntax. Other

types of flags provide input and output options like counting matches. There are flags which are icGrep

specific like segment size and thread count. icGrep supports GNU basic regular expression syntax “-G” as

well as their extended regular expression syntax “-E”. icGrep also supports Unicode ICU regular

expression syntax. Some combinatorial parameters may not be supported in the basic and extended

regular expression syntaxes. These parameters can be modified depending on the grep tool under test.

Test Case Generation

After setting all the parameters for the grep tool under test, we generate test cases from the model using

combinatorial testing tools such as ACTS. These test cases are abstract test cases because the parameters

and values in the model are abstract. Thus, it is necessary to derive concrete test cases from these abstract

test cases before the actual testing can be performed. Note that an abstract test case typically represents a

set of concrete test cases, from which one representative is typically selected to perform the actual testing.

We show in Figure 1 The architecture of the proposed methodology. In order to perform this testing

technique, we process the abstract test cases one by one. At each cycle, we first transform the abstract test

case into a concrete test case using the regular expression generator and the string generator. The regular

expression generator takes the values of the test case generated from ACTS and generates a

corresponding regular expression and command line flags to be tested. The string generator takes the

generated regular expression as input and generates a file containing a match to the regular expression

Figure 1: Architecture of the proposed methodology

International Journal of Applied Engineering and Technology ISSN: 2277-212X

An Open Access, Online International Journal Available at http://www.cibtech.org/jet.htm

2022, Vol.12, pp.128-138/Vijay et al.

Research Article

Centre for Info Bio Technology (CIBTech) 134

Regular Expression Generator: The first step to transform the ACTS raw test cases into ready-to-run test

cases is the regular expression generator. The regular expression generator transforms a set of parameter

values in ACTS into a regular expression along with the command line flags.

Looking at Figure 2, a snapshot of icGrep project on ACTS, the first row represents the parameters

specified in the input space modeling phase where the figure only shows a subset of the parameters. Each

of the following rows is a set of values that represent a single test case.

Figure 2: A snapshot of icGrep project on ACTS

First, we set the syntax of the regular expression based on the associated parameter value where –G is the

GNU basic regular expression syntax, -E is the GNU extended regular expression syntax [32] and –P is

the default icGrep regular expression syntax that follows the Unicode ICU regular expression syntax [33].

Figure 3: Regular Expression Generator Flow Chart

Second, we collect a set that contains the parameters representing character classes whose value is not

“false”. For each of these parameters, the syntax of the corresponding regular expression metacharacter

may differ depending on the regular expression syntax. The GNU basic regular expression syntax only

supports a few metacharacters that are considered character classes. The “Any” metacharacter is

transformed to the metacharacter “.” in all syntaxes. The same applies to the whitespace character which

transforms to “\s” and its complement “\S”. The rest of the metacharacters supported by the GNU basic

International Journal of Applied Engineering and Technology ISSN: 2277-212X

An Open Access, Online International Journal Available at http://www.cibtech.org/jet.htm

2022, Vol.12, pp.128-138/Vijay et al.

Research Article

Centre for Info Bio Technology (CIBTech) 135

regular expression syntax an operational behavior and will be discussed further down this section.

Finally, the Start and End parameters are added to the beginning and the end of the RE set respectively if

their value is “true”. These metacharacters would have no meaning if present in the middle of a regular

expression, therefore are added after shuffling the RE set. The regular expression is the combination of

each of the elements in RE in an ordered matter.

After transforming the raw ACTS combinatorial values into a regular expression, the regular expression

generator iterates through the flags parameters storing each command line flag in a set (F).

Results and Evaluation

In order to thoroughly evaluate CoRE, we first run CoRE over different t-way combinatorial

configurations and calculate the statement and coverage rate for each run. We also measure the fail rate by

the formula:

 =

Once we find a configuration where adding more combinatorial constraints does not increase code

Coverage nor the fail rate, we will use this configuration to evaluate CoRE against two different testing

techniques. The first is the manually written test suite. It is written by icGrep developers based on the

icGrep requirement specification. The other testing techniques we evaluate CoRE against are two

automated testing tools AFL and AFL and AFLFast. AFLFast is an extension of the state of the art fuzzer

American Fuzzy Lop. AFLFast performed better than AFL with a better fault detection rate on GNU

binutils, a collection of binary tools widely used for the analysis of program binaries [11]. We will

evaluate CoRE against AFL and AFLFast to determine how well CoRE performs against state of the art

automated testing methods.

Experimental Infrastructure: We ran our experiments on a MacBook Air with a 2.2 GHz Intel Core i7

processor with 4 cores and 8GB RAM. We ran the testing tools on icGrep revision 5720. We ran each test

10 times and we used Gcov tool to measure code coverage. We also ran AFL and AFLFast on all 4 cores

to maximize its performance. Weset 10 seconds to be the time limit for each test run. GNU grep version

3.1 and the library ICU4C version 59 were used in CoRE for differential testing.

Combinatorial

Level

Number of

Tests

Statement

Coverage %

Function

Coverage %

Fail Rate

%

Elapsed Time

1-way 10 66.8 73.3 20 12s

2-way 64 67.1 73.4 22.2 1m39s

3-way 394 67.8 73.6 26.5 12m5s

4-way 2228 68.1 74.3 29.1 1h8m46s

5-way 10926 68.4 74.4 32.3 5h42m21

Table 2 Code Coverage and Bug Rate for Different Levels of Combinatorial Testing On Core

Table 2 shows the code coverage for CoRE running different levels of t-way combinatorial testing. It also

shows the number of tests generated in each level as well as the execution times for different levels of

combinatorial interaction on CoRE testing icGrep with differential testing with GNU grep and ICU

RegexMatcher.

Another note is that 6-way was dropped out of the evaluation process despite the possibility of having

even more complex tests than 5-way. The reason we did not evaluate 6-way is because we could not

generate a 6-way combinatorial test suite in ACTS before running out of memory.

From Table 2, we notice that the combinatorial interaction level has almost no effect on statement or

International Journal of Applied Engineering and Technology ISSN: 2277-212X

An Open Access, Online International Journal Available at http://www.cibtech.org/jet.htm

2022, Vol.12, pp.128-138/Vijay et al.

Research Article

Centre for Info Bio Technology (CIBTech) 136

function coverage. But when we look at the fail rate, we find that as we increase the level of

combinatorial testing, the percentage of failed tests increases. For this reason, we evaluate CoRE against

manually written test suits, AFL and AFLFast using 5-way combinatorial testing.

Figure 4: Code coverage for manual test suites and CoRE on 5-way combinatorial level

From Figure 4, we note that CoRE has almost the same score for both statement coverage and function

coverage as the manual test suites. Manual test suites scored 1% higher in both statement and function

coverage. Even when comparing manual test suites with 2-way combinatorial level on CoRE to have

similar execution times (manual tests take 1m41 seconds to execute), the difference in about 1% lower

coverage in statements and functions.

Limitations: The string generator in CoRE relies on icGrep’s parser to construct the regular expression

abstract syntax tree. This limits CoRE to test grep tools with syntaxes similar to the ones supported by

icGrep. Also, relying on icGrep’s parser adds some bias to the generated strings since the string generator

will only generate characters that are defined in the character class by icGrep’s parser.

Another limitation is that the string generator only generates strings that match a regular expression. This

means if a regular expression matching tool returns all line as matches and returns nothing when inverted

match is invoked would theoretically pass all tests generated by CoRE. Adding a feature to the string

generator to generate non- matching lines would eliminate this concern.

Future work

CoRE is an implementation of a fully automated combinatorial testing methodology for regular

expression matching tools. It showcases our idea of a fully automated combinatorial testing approach to

testing regular expression matching tools. There are different areas to continue our research in.

One way to enhance CoRE is to expand the capabilities of core enabling it to perform differential testing

between grep tools with different syntaxes testing the common features between them. We could generate

a regular expression AST instead of a full regular expression. Then, we could transform the AST to

different syntaxes based on the grep tools under test. For instance, any regular expression written in the

GNU BRE syntax could be transformed into a GNU ERE syntax. This give us the ability to test grep’s

GNU BRE syntax against its ERE syntax.

The experiments we have done show an advantage of CoRE over AFL and AFLFast testing icGrep, GNU

grep and PCRE grep in statement and function coverage. Having more time and resources would give us

the chance to evaluate CoRE against other automated testing techniques like Nezha. Nezha uses fuzzing

as well as differential testing to test for correctness but it requires writing code to make it work on icGrep

and other grep tools.

Another interesting take on CoRE would be to use differential testing to measure performance differences

between regular expression matching tool. Performance is an important aspect of regular expression

8
0

7
5

7
0

6
5

6
0

5
5

5
0

Manual Test
Suites

Co
R

Stateme
nt

Functi
on

International Journal of Applied Engineering and Technology ISSN: 2277-212X

An Open Access, Online International Journal Available at http://www.cibtech.org/jet.htm

2022, Vol.12, pp.128-138/Vijay et al.

Research Article

Centre for Info Bio Technology (CIBTech) 137

matching tools and would be interesting to know which test cases cause performance problems to icGrep

compared to other grep tools and which test cases give icGrep the performance advantage.

We would like to further enhance CoRE by identifying unique bugs. This requires little instrumentation

of the system under test to track the control flow of each test case and only report bugs that explore new

paths in the control glow graph.

Finally, Expanding our methodology for a fully automated combinatorial testing solution and testing

systems with complex input spaces other than regular expression matching tools.

Conclusion

In this dissertation, we presented a methodology to reach fully automated testing for regular expression

matching tools. We implemented CoRE, a testing tool based on our proposed approach testing icGrep,

GNU grep and PCRE grep.

To reach full automation, we implemented a regular expression generator and a string generator to

generate test cases. We also performed differential testing on the generated test cases.

We evaluated CoRE against hand written test suites and two fuzzing tools, AFL and AFLFast testing

icGrep and measuring code coverage and bug detection rate.

CoRE outperformed AFL and AFLFast in both statement coverage and function coverage in icGrep,

GNU grep and PCRE grep. CoRE also found bugs that were not caught by manual test suites nor AFL or

AFLFast. CoRE also detected a bug in FreeBSD grep running Mac OSX 10.1.

Our proposed approach to automated combinatorial testing for regular expression matching tools showed

to be effective and can improve the quality of regular expression matching tools.

REFERENCES

K. Thompson (1968). Programming Techniques: Regular Expression Search Algorithm, vol. 11, no. 6,

pp. 419-422.

B. Kernighan (2007). A Regular Expressions Matcher, in Beautiful Code, O'Reilly Media.

R. D. Cameron, T. C. Shermer, A. Shrirman, K. S. Herdy, D. Lin, B. R. Hull and D. Lin

(2014). Bitwise data parallelism in regular expression matching, in The 23rd international conference on

Parallel architectures and compilation, Edmonton.

T. Stubblebine (2003). Regular Expression Pocket Reference, Sebastopol, CA: O'Reilly &

Associates, Inc,.

J. Goyvaerts and S. Levinthan (2012). Regular Expressions Cookbook, O'Reilly Media, pp. 1-2.

D. R. Kuhn, R. N. Kacker and Y. Lei (2013). Introduction to Compinatorial Testing, Chapman and

Hall/CRC.

M. N. Borazjany, G. Laleh, Y. Lei, R. Kacker and R. Kuhn (2013). An Input Space Modeling

MEthodology for Combinatorial Testing, in 2nd International Workshop on Combinatorial Testing,

Luxembourg. D. R. Kuhn and M. J. Reilly(2012).An investigation of the Applicability of Design of

Experiments to Software Testing, in 27th Annual Nasa Goddard/IEEE.

M. N. Borazjany, (2013). "Applying Combinatorial Testing to Systems with A Complex Input Space,"

M.Zalewski (2017)AmericanFuzzyLop[Online].Available: http://lcamtuf.coredump.cx/afl/README.txt.

[Accessed 2 11].Thesis (Ph. D). M. Bohme, V. Pham and A. Roychoudhury (2016). Coverage-based

Greybox Fuzzing as Markov Chain in SIGSAC Conference on Computer and Communications Security.

R. D. Cameron, N. Medforth, D. Lin, D. Denis and W. N. Sumner (2015).Bitwise Data Parallelism

with LLVM: The ICgrep Case Study.

P. Hazel(1999).Exim and PCRE: How free software hijacked my life, [Online].

Available: http://www.ukuug.org/events/winter99/proc/PH.ps. [Accessed 3 11 2017].

D. M. Cohen, S. R. Dalal, J. Parelius and C. Patton (1996). The Combinatorial Design to

Automatic Test Generation, vol. 13, no. 5, pp. 83-88, 9.

M. Grindal, J. Offutt and S. F. Andler (2005).Combination Testing Strategies: A Survey, vol. 15,

no. 3, pp. 167-199.

http://lcamtuf.coredump.cx/afl/README.txt
http://lcamtuf.coredump.cx/afl/README.txt
http://lcamtuf.coredump.cx/afl/README.txt
http://www.ukuug.org/events/winter99/proc/PH.ps

International Journal of Applied Engineering and Technology ISSN: 2277-212X

An Open Access, Online International Journal Available at http://www.cibtech.org/jet.htm

2022, Vol.12, pp.128-138/Vijay et al.

Research Article

Centre for Info Bio Technology (CIBTech) 138

Y. Lei, R. Kacker, D. R. Kuhn, V. Okun and J. Lawrence (2007). "IPOG/IPO -D: Effecient Test

Generation for Multi-Way Combinatorial Testing," vol. 18, no. 3, pp. 125-148

R. W. D. Kuhn and R. Gallo (2004).Software fault interactions and implications for software

testing,vol. 30, no. 6, pp. 418-421,

C. Lemieux and K. Sen, FairFuzz:Targeting Rare Branches to Rapidly Increase Greybox Fuzz

Testinig Coverage, [Online]. Available: https://arxiv.org/pdf/1709.07101.pdf. [Accessed 3 11 2017].

T. Petsios, A. Tang, S. Stolfo, A. Keromytis and S. Jana (2017). "NEZHA: Efficient Domain-

Independent Differential Testing.

W. M. McKeeman (1998). Differential Testing for Software,vol. 10, no. 1, pp. 100-107

C. Brubaker, S. Jana, B. Ray, S. Khurshid and V. Shmatikov (2014).Using frankencerts for automated

adversarial testing of certificate validation in SSL/TLS implementations, in IEEE

Symposium on Security and Privacy

Y. Chen and Z. Su (2015). Guided differential testing of certificate validation in SSL/TLS

implementations, in The 10th Joint Meeting on Foundations of Software Engineering,

S. Sivakorn, G. Argyros, K. Pei, A. D. Keromytis and S. Jana (2017). HVLearn: Automates Black-

Box Analysis of Hostname Verification in SSL/TLS Implementations," in IEEE Symposium on

Security and Privacy, San Jose.

X. Yang, Y. Chen, E. Eide and J. Regehr (2011). Finding and Understanding Bugs in C

Compilers," in The 32nd ACM SIGPLAN Conference on Programming Language Design and

Implementation.

Y. Chen, T. Su, C. Sun, Z. Su and J. Zhao (2016).Coverage-directed differential testing of JVM

implementations, in The 37th ACM SIGPLAN Conference on Programming Language Design and

Implementation.

G. Argyros, I. Stais, S. Jana, A. D. Keromytis and A. Kiaylias (2016).SFADiff: Automated Evasion

Attacks and Fingerprinting using Black-box Differential Automata Learning, in ACM

SIGSAC Conference on Computer and Communications Security

V. Srivastava, M. D. M. K. S. Bond and V. Shmatikov (2011). A Security Policy Oracle: Detecting

Security Holes using Multiple API Implementations," ACM SIGPLAN Notices, vol. 46, no. 6.

S. Jana and V. Shmatikov (2012). Abusing File Processing in Malware Detectors for Fun and Profit,

in IEEE Symposium on Security and Privacy,

D. Brumley, J. Caballero, Z. Liang, J. Newsome and D. Song (2007). Towards Automatic

Discovery of Deviations in Binary Implementations with Applications to Error Detection and Fingerprint

generation, in The 16th USENIX Security Symposium.

Unicode.org, "Unicode Character Database," The Unicode Consortium, 14 6 2017. [Online].

Available: http://www.unicode.org/reports/tr44/. [Accessed 3 11 2017].

GNU Grep Manual, GNU, 9 2 2017. [Online]. Available:

https://www.gnu.org/software/grep/manual/grep.html. [Accessed 3 11 2017].

ICU User Guide (Regular Expressions), [Online]. Available: http://userguide.icu-

project.org/strings/regexp. [Accessed 3 11 2017].

R.Expressions.info.[Online]. Available: https://www.regular-expressions.info/posixbrackets.html#class.

[Accessed 3 12 2017].

http://www.unicode.org/reports/tr44/
http://www.gnu.org/software/grep/manual/grep.html
http://userguide.icu-/

